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Studies in visual search have shown that feedback training can improve visual inspection performance (speed
and accuracy), provided it is given in a timely and appropriate manner. Traditionally, performance feedback,
i.e. information about the outcome, serves as the basis of most feedback training schemes. Other forms of
feedback, which provide search strategy information, may have a role to play in improving inspection
performance. This form of feedback is referred to as ‘cognitive feedback’. This paper describes the setup for
collecting and analyzing eye movements using a 3D binocular eye tracker, which serves as a tool for providing
cognitive feedback training. It also emphasizes the various technical issues related with eye tracker integration
and further discusses the use of a new 3D-fixation recognition algorithm.

INTRODUCTION

Aircraft inspection and maintenance are an essential
part of a safe, reliable air transportation system. Visual
inspection is important as it accounts for almost 90 % of
aircraft inspection (Drury et al., 1990). Since the time spent by
the aircraft in maintenance represents a large loss of revenue,
the inspection system must improve in its effectiveness and
efficiency. Training has been identified as the primary
intervention strategy in improving inspection performance
(Gramopadhye et al, 1998). If training is to be successful, it is
clear that inspectors need to be provided with training tools to
help enhance their inspection skills.

There have been several training strategies
documented in the literature for visual inspection
(Gramopadhye, Drury and Prabhu, 1997), one among them is
feedback training. Traditionally, the feedback provided to the
inspectors has been performance feedback, which consists of
feedback on search times, search errors (faults not detected)
and decision errors (Micalizzi and Goldberg, 1989).
Investigators have reported improved performance by
providing performance feedback (Gramopadhye et al, 1996).
However, it is possible to give process feedback, which
provides the trainee with task information on the search
processes and strategies. This kind of feedback is referred to
as ‘cognitive feedback’ (Gramopadhye et al., 1996).

Applications of cognitive feedback in the visual
inspection domain have been very rare. Its application in non-
inspection situations such as learning tasks (Lindell, 1976) has
been shown to have beneficial effects. In a study conducted by
Deane (1972), cognitive feedback was found to result in a
better understanding of the task characteristics and improved
control performance by humans over the execution of their
knowledge. In a more recent review of decision studies
(Balzer et al., 1989), relating to both realistic and abstract

tasks, cognitive feedback showed consistent success in
providing individuals with an insight into their own policies
and strategies. Search performance in a visual inspection task
depends on the inspector’s ability to understand the task
characteristics and his decision to adopt an efficient search
strategy. Providing cognitive feedback can prove to be
beneficial.

Cognitive feedback consists primarily of three
feedback modes in which information can be given to the
inspectors. They are auditory cognitive feedback, statistical
cognitive feedback and graphical cognitive feedback. For
visual search, auditory cognitive feedback would seem
inappropriate, as input is primarily visual and spatial, with
output typically being a motor action, whereas statistical
cognitive feedback and graphical cognitive feedback would
seem to be more appropriate. In the past, visual inspection
literature has neither provided information on a better form of
cognitive feedback, nor a comparison of cognitive feedback to
traditional performance feedback. The only study in the visual
inspection literature, that addressed this issue, was by
Gramopadhye, Drury and Sharit (1996). Their study showed
that the effect of cognitive feedback alone did not affect
search performance (speed and accuracy) but it did
significantly influence the search strategy. In their study a
movable window, i.e. the field of view or ‘viewer’ as it was
explained to the subjects, could be moved around the
inspection area using the mouse, exposing whatever was
within the viewer’s field of view. This viewer was used as tool
for collecting cognitive feedback information and was
analogous to collecting eye movement data. The authors’
rationalized the use of the viewer as a tool for collecting eye
movement data, based on cost and ease of data collection.
However, this method is intrusive, relies only on foveal vision
and may not reflect true search behavior. Moreover, their



results on the use of cognitive feedback may have been an
artifact of the experimental setup.

In recent years, reduced cost, improved accuracy and
high computational capability have enabled researchers to use
non-intrusive eye trackers for a range of visual applications.
This method is more accurate and is reflective of actual search
behavior. Examples of this can be found in the studies
conducted by Goldberg and Kotval (1998) and Wang et al
(1997). These studies reported successes in understanding
visual search strategies for graphical interface design and
training applications respectively. Drawing from the results of
these studies and the earlier study by Gramopadhye et al
(1996), we see that eye movement recordings as a cognitive
feedback tool may have a role to play in improving visual
search performance. This paper describes the setup for
collecting and analyzing eye movements in a virtual reality
inspection based environment integrated with a 3D binocular
eye tracking system.

EYE TRACKING IN VIRTUAL REALITY
ENVIRONMENT

Interest in gaze-contingent interface techniques has
endured since early implementations of eye-slaved flight
simulators and has since permeated several disciplines
including human-computer interfaces, teleoperator
environments, and visual communication modalities (Jacob,
1990; Starker and Bolt, 1990; Held and Durlach, 1993).
Recent applications of an eye tracker in virtual reality
environment have shown promising results in the use of the
device as a component for multi-modal interface systems.
Some of the examples are Jacob and Tanriverdi (2000) who
used an eye tracker as a selection device in virtual reality
environment and Danforth et al., (2000) who used an eye
tracker as an indicator of gaze in a gaze-contingent, multi-
resolution terrain navigation environment. There are two types
of applications of an eye tracker: one is to use it as an
interactive device and the other is to serve as a diagnostic tool.
The eye tracking system discussed in this paper serves as a
diagnostic tool with the user's eye movements unobtrusively
being recorded in real time for post-immersion analysis.

Eye Tracker Coordinate Mapping

The eye movement data obtained from the tracker
must be mapped to a range appropriate for the VR application.
Specifically, the 2D eye tracker data, expressed in eye tracker
screen coordinates, must be mapped to the 2D dimensions of
the near viewing frustum.  The parameters left, right, bottom,
top, near and far, defines the 3D viewing frustum employed in
the perspective viewing transformation.  Figure 1 shows the
dimensions of the eye tracker screen (left) and the dimensions
of the viewing frustum (right).

To convert the eye tracker coordinates ),( yx ′′ to
graphics coordinates a linear interpolation mapping is used:
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Since the eye tracker, origin is at the top-left of the screen and
the viewing frustum's origin is at the bottom-left (a common
discrepancy between imaging and graphics applications), the
term )( y ′−512  in Equation (2) handles the necessary y-
coordinate mirror transformation.

Figure 1. Coordinate mapping of eye tracker to 3D viewing
frustum screen and example of mapping measurement.

The above coordinate mapping assumes that the eye
tracker coordinates are in the range ],[ 5110 .  In reality, the
usable, or effective, coordinates will be dependent on (i) the
size of the application window, and (ii) the position of the
application window.  Proper mapping between eye tracker and
application coordinates is achieved through the measurement
of the application window's extents in the eye tracker's
reference frame.  This is accomplished by using the eye
tracker's own fine cursor movement and cursor location
readout.

To obtain the extents of the application window in
the eye tracker's reference frame, the application window's
corners are measured with the eye tracker's cursor.  These
window extents are then used in the linear mapping equation.
Figure 1 illustrates an example of a 600×450-application
window, as it would appear on the eye tracker scene monitor.
Based on the measurements shown in Figure 1, the linear
coordinate mapping is:
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The central point on the eye tracker display is (267,250).  Note
that y is subtracted from 449 to take care of the image/graphics
vertical origin flip.

Gaze Vector Calculations

The calculation of the point of regard in three-space
depends on only the relative positions of the two eyes in the
horizontal axis.  The parameters of interest here are the three-
dimensional virtual coordinates, ),,( ggg zyx , which can be

determined from traditional stereo geometry calculations.
Figure 2 illustrates the basic binocular geometry.

Helmet tracking determines both helmet position and the
(orthogonal) directional and up vectors, which determine
viewer-local coordinates shown in the diagram.  The helmet



position is the origin, the helmet directional vector is the
optical (viewer-local z) axis, and the helmet up vector is the
viewer-local y-axis.

Given instantaneous, eye tracked, viewer-local
coordinates ),( ll yx  and ),( rr yx  in the left and right image
planes (mapped from eye tracker screen coordinates to the
near view plane), and head-tracked head position coordinates

),,( hhh zyx , the viewer-local coordinates of the gaze point,

),,( ggg zyx , are determined by the relations:
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Figure 2. Basic binocular geometry
Where )/( bxxbs rl +−= , b is the disparity distance between
the left and right eye centers, and f is the distance to the near
viewing plane along the viewer-local z-axis. Gaze point
coordinates based on mergence calculations given by
Equations (5) --- (7) are presently closely correlated with the
user's head location. The right image shows the collection of
gaze points from a side viewpoint.  With respect to depth, the
gaze points do not precisely fall on the polygonal surfaces of
the environment.

To calculate the gaze/polygon intersection, the gaze
point is expressed parametrically as a point on a ray with
origin ),,( hhh zyx , the helmet position, with the ray emanating
along a vector scaled by parameter s.  That is, rewriting
Equations (5- 7), we have:
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Or, in vector notation,
vhg s+=                        (8)

where h  is the head position, v is the central view vector and s
is the scale parameter as defined previously.  The view vector
v is obtained by subtracting the helmet position from the
midpoint of the eye tracked x-coordinate and focal distance to
the near view plane, i.e.,
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where m denotes the left and right eye coordinate midpoint.
To align the view vector to the current head orientation, the
vector m must first be transformed to the proper

(instantaneous) head orientation.  This is done by first
normalizing m and then multiplying it by the orientation
matrix returned by the head tracker.

Given the three-dimensional gaze vector, v, specified
by Equation (9) gives the coordinates of the gaze point
parametrically along a ray originating at the head position

),,( hhh zyx .  The depth of the three-dimensional gaze point in

world coordinates is valid only if 0>s .

Gaze Point Calculations

The formulation of the gaze direction given by
Equation (9) can be used for testing virtual gaze/polygon
intersection coordinates via traditional ray/polygon
intersection calculations commonly used in ray tracing
(Glassner, 1989). The gaze/polygon intersection point is found
on the closest polygon to the viewer intersecting the gaze ray,
assuming all polygons are opaque.  This polygon is found by
testing all polygons in the scene for intersection with the gaze
ray.  To find the intersection point g of the gaze ray with the
closest polygon, a new interpolant t is obtained by calculating
the gaze ray intersections with all scene polygons.  All such
intersections are examined for which 0>t .  The interpolant t
is obtained by substituting the gaze ray equation into the
polygon's plane equation (in vector notation):
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where N is the negated polygon normal and D is the height
parameter of the polygon's plane equation.  The geometry of
this calculation is depicted in Figure 3.

Figure 3. Ray/plane geometry.
The calculation of the ray/plane intersection may be speeded
up by evaluating the denominator of Equation (10) first.  The
intersection algorithm is given below.

;vN ⋅=dv   // Denominator

if )( 0<dv  {
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;/ do vvt =
}
Note that the ray/polygon intersection algorithm only returns
the intersection point of the ray and the infinite plane defined
by the polygon's face normal.  Because the normal defines a
plane of infinite extent, the point g must be tested against all
of the polygon's edges to establish whether the point lies
inside the polygon.  This is an instance of a solution to the
well-known “point-in-polygon” problem. If the point g is
bounded by the perpendicular planes defined by the polygon's
edges, then g lies within the polygon, otherwise it lies on the
plane defined by the face normal N, but outside the polygonal
region. The resulting algorithm generates a scan path
constrained to lie on polygonal regions within the virtual
environment.



3D Eye Movement Analysis

In diagnostic eye tracking virtual reality (VR)
applications, the purpose of eye movement recording is to
catalog the user’s (overt) visual attention within the
environment over time. A record of the user’s fixation
sequence (scan path) can be used to examine attentional
qualities of the environment, the user’s visual search
strategies, or other related cognitive processes. The scan path
is usually analyzed (in real-time or off-line) to distinguish
fixations. Current 2D techniques are not always suitable for
analysis of eye movements in VR since they tacitly assume
that the head is fixed and the line of sight is perpendicular to
the view plane. In the few VR eye-tracking studies currently
being conducted, fixation analysis is often not well
documented, or restricted to eye-in-head measurements. For
example, Jacob’s (2000) work on visual selection in an
interactive VR system is based on the accumulation of
fixations on potential target objects. The algorithm used by
Jacob operates on eye-in-head measurements and is effectively
an extension of the traditional region of interest (ROI)-based
approach. The algorithm classifies fixations based on location
of gaze and dwell time. This paper presents a velocity-based
algorithm that operates directly on point of regard (POR) data,
mapped to the  (virtual) world coordinates.

Traditional Eye Movement Analysis

Traditional eye movement signal analysis techniques
can be grouped into three broad categories: position-variance,
velocity-based, and ROI-based (Salvucci and Goldberg, 2000).
The common goal of these techniques is the location of
saccades and fixations in the eye movement signal over the
given stimulus (or within stimulus ROIs, as in the latter class
of algorithms). Most techniques rely on the measurement of
visual angle, where it is often tacitly assumed the head is
located at a fixed distance to, and usually perpendicular to, the
stimulus screen. The traditional approach starts by measuring
the visual angle of the object under inspection on a pair (or
more) of raw eye movement data points. Each such data point,
usually denoted by (xi,yi), is referred to as the Point Of Regard.
Given the distance between POR data points, r, the visual
angle, θ, is calculated by the equation: θ = ?2tan-1 (r/2D),
where D is the (perpendicular) distance from the eyes to the
viewing plane (Duchowski et al, 2000).  The visual angle, θ,
and the difference in time stamps, ∆t, between the POR data
points allows velocity-based analysis, since θ/∆t gives eye
movement velocity in degrees visual angle per second. A
common threshold of 600 deg/s (peak velocity) is used to
identify saccades (and hence fixations).

New (3D) Eye Movement Analysis

In VR, an eye tracker is used to obtain raw POR data
relative to the eye tracker’s screen reference frame. The
measured POR coordinate pair must be mapped to the extents
of the application program’s view port. A simple linear
interpolation mapping can be used for this purpose. Care must

be taken to measure the usable, or effective, application
window extents, which depend on (i) the size of the
application window, and (ii) the position of the application
window relative to the eye tracker’s reference frame. In VR,
the application must also record the coordinates of the head’s
position and orientation. This information is usually provided
by the head-tracking device, and is used to transform the
mapped POR data to world coordinates in the head-centric
reference frame.

3 D Fixation Algorithm

Once the real-time POR is appropriately mapped into
the world coordinates, the participant’s scan path is obtained
by calculating points of intersection of the user’s gaze with
environmental polygons, termed here as gaze intersection
points, or GIPs. Given the raw GIPs in three dimensions, the
principle of the velocity-based calculation is identical to the
traditional 2D approach, with the following important
distinctions:
1. The head position, h, must be recorded to facilitate the

calculation of the visual angle.
2. Given two POR data points in three-space, Pi  = (xi ,yi ,zi)

and Pi+1 = (xi+1, yi+1,zi+1) and the head position at each
instance, hi  and hi+1, the visual angle θ ?is calculated
from the dot product of the two gaze vectors defined by
the difference of the POR and head position:
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where gi  = pi  - h  and h  is the averaged head position the
sample time period. With visual angle, θ, and the time stamp
difference between pi and pi+1, the same velocity-based
threshold can be used as in the traditional 2D case. Because all
calculations are formed in world coordinates, no conversion
between screen resolution and distance to target is necessary.
In order to validate the data generated by the fixation
algorithm, a search task trial was performed. The eye tracker
used is a binocular ISCAN unit built into a Virtual Research
V8 Head Mounted Display (HMD). Although the eye tracker
operates at 60Hz (video rate), due to software limitations the
effective sampling rate was 30Hz. HMD position and
orientation tracking was by an Ascension Flock Of Birds
(FOB).

Assuming fixation durations of range 150ms–600ms
(Irwin, 1992), the expected number of fixations for a trial run
of 17.113 seconds in length is approximately 45 (with range of
28–114 fixations of 600ms and 150ms durations,
respectively). The 3D-fixation algorithm detected 293
fixations, clearly overestimating the number of fixations. This
result is not surprising, however, and is mostly likely due to
the short filter used in the velocity-based analysis. The filter is
mathematically appropriate for calculating velocity, but due to
its short length, it is known to be quite noisy. However, the
filter gives a good first approximation, and because of its short
length, is suitable for real-time applications. For more robust
off-line fixation analysis, a longer filter should be used.
Hence, further evaluation of the algorithm is required.



Tool for cognitive feedback training

Cognitive feedback for a visual inspection task can
be provided in two forms: statistical cognitive feedback and
graphical cognitive feedback. The data gathered from the
system for statistical cognitive feedback consists of total
number of fixations identified in the complete trial, mean
fixation times, total number of fixations identified in area of
interest (AOI, defined as the area around a defect target),
mean fixation times in the AOI, total search times and
percentage of area covered during the trail. Graphical
feedback data is displayed using a 3D-graphical feedback
window, which loads an inspection scenario and overlays it
with viewer scan paths gathered during the actual run. Figure
9 shows two types of graphical displays, the raw scan path
(Figure 9a) and the fixation scan path (Figure 9b). The raw
scan path is formed by the point-of–regard points and the
fixations scan path is formed by the points identified by the
fixation algorithm. Every display identifies the start and the
end of the scan path using a color coding scheme which
represents the start of the fixation with a green color dot and
the end with a red color dot.

    (a) Raw Scan path                      (b) Fixation Scan path
Figure 9.  Display of Graphical Cognitive Feedback.

CONCLUSION

This paper outlines the use of 3D-eye movement
analysis to provide cognitive feedback using a virtual reality
aircraft inspection environment.  Furthermore, the paper
describes an operational platform for real-time recording of
eye movements in a Virtual Reality environment.  The
platform is based on high-end graphics engines and an electro
magnetically tracked, binocular helmet equipped with infrared
eye tracking capability.  Rendering techniques are relatively
simple, relying only on standard (OpenGl) graphics library
calls. Tracking routines deliver helmet position and orientation
in real-time, which are used directly to provide, updated
images to the HMD. User gaze direction can be tracked in
real-time, along with calculated gaze/polygon intersections.
This process helps in analyzing recorded gaze intersection
points for comparison with stored locations of artificially
generated defects in the inspection environment. The use of a
VR based inspection environment will enable us to conduct
controlled studies and address visual search strategy issues for
aircraft inspection training.
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