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Abstract— We have previously developed a prototype virtual 

reality enhanced rehabilitation system using the CyberForce 

system to assist patients who have suffered from upper extremity 

stroke to practice some daily-life exercises. However, full 

calibration of the system for each patient is currently not only 

tedious and time-consuming, but also impractical in the case of 

severely disabled hands. In this paper, we propose a practical and 

easy-to-perform hand measurement method to calibrate the 

CyberGlove using artificial neural networks. The neural 

networks are trained with the hand segment sizes as input and 

the manually collected calibrated data as output. The only 

external device needed is a 2-D digital camera to take the picture 

of the subject’s hand against a chessboard for the hand segment 

sizes measurement. Subjective evaluation results for various 

common hand postures show the effectiveness of the proposed 

method.  

Keywords- Virtual Rehabilitation, CyberGlove Calibration, Human 

Hand Measurement 

I.  INTRODUCTION 

With recent advances in Human Computer Interfaces and 
Virtual Reality (VR) technologies, VR-enhanced stroke 
rehabilitation applications have been actively explored 
recently [1] [2]. These VR applications offer the potential to 
create systematic human testing, training and treatment 
environments which allow precise control of complex 
dynamic 3-dimensional (3-D) stimulus presentations, 
behavioral tracking, performance measurement, data recording 
and analysis [3] [4] [5]. At the Discover Lab, we have 
developed a prototype VR rehabilitation system to assist 
patients who have suffered from a stroke with upper extremity 
weaknesses [6] [7]. The physical setup of the prototype adopts 
the integrated CyberForce systems from CyberGlove Systems 
as shown in Fig. 1. The input measurements of the whole 
system include three parts: the whole hand translational 
position using the CyberForce subsystem, the rotation of the 
forearm using a 3-D magnetic tracker, and the hand gesture 
using a CyberGlove. One limitation of the system is that the 
motions of the elbow, the upper arm, and the shoulder are not 
measured which are in fact important to be monitored for 
upper extremity stroke rehabilitation. However, in the future, 
result of other on-going research about these limitations  can 
be integrated into our system for the capture of the arm 
movements. For example, Hingtgen et al. present an upper 

extremity kinematic model which is able to accurately 
quantify upper extremity arm motion using a Vicon motion 
analysis system [8]. In [9], Zhou et al. proposed a data fusion-
based tracking algorithm to estimate the upper limb 
movements using two wearable inertial sensors placed around 
the wrist and the elbow joints. To eliminate the problem of 
physically attaching sensors on the subjects’ arm, Mihailidis et 
al studied the use of computer vision-based system in tracking 
of human motion in an intelligent environment [10]. However, 
presently it is still very challenging to track fine motor 
movements such as hand or arm movements with these 
methods, and more research is still needed in this area. 

 

The design requirements of our system were the results of 
several consultations with the Rehabilitation Centre of the 
Ottawa General Hospital. The prototype allows the patients to 
practice some daily-life exercises, such as moving common 
objects on the shelf, pouring tea into a cup, eating soup from a 
bowl, and tracing a maze without touching the walls. The 
initial implementation was also placed under the analysis of a 
group of five Occupational Therapists (OTs) that provided 
thorough feedback and further amendments to the system [6]. 
One of the main feedbacks from the OTs is that the calibration 
of the whole system is very tedious and time-consuming, 
particularly for the CyberGlove. CyberGlove is a kind of hand 
input device to measure human hand postures, so that the user 
can intuitively interact with the synthetic objects in a virtual 
environment in a natural way [11]. The glove used for this 

 

Figure 1: CyberGlove system used in our haptic-enabled rehab system 



study has a total of 22 sensors placed at critical points. Due to 
variations of the human hand size, the relative positions of the 
sensors to their correspondent critical points of the hand are 
different across the users. Calibration is therefore required. 
With the factory pre-installed calibration method, it takes 
takes about 5~10 minutes to get a decent calibration for a 
healthy person. This will be even more problematic in the case 
of rehab patients who have severe disability, to the extent that 
their hand’s motor functions are not physically suitable for use 
in the normal calibration process.  

Based on its applications, the existing calibration methods 
for CyberGlove fall into two categories. The first category 
focuses on the determination of the real joint angles of the hand 
with high accuracy [12] [13] [14], while the second category 
aims at achieving high visual fidelity of hand postures inside 
the virtual environments [15] [16] [17]. Accordingly, their 
respective evaluation methods are also different. For the first 
category, the performances are evaluated in terms of the 
absolute differences between the real values and their 
interpreted values inside the application. For the second 
category, the performances are evaluated by visually 
comparing the real world hand postures and their 
corresponding virtual representations. During calibration, the 
subjects are usually asked to pose different postures with their 
hand and move for an amount of time, or against some physical 
constraints. Therefore, for rehabilitation systems, simplifying 
the calibration process is not only a desirable feature for all 
patients, but also a necessary feature for some specific patients 
with more severe hand disability, without which the rehab itself 
cannot be performed.  

In this paper we propose a practical calibration technique 
that is faster and simpler than existing methods, and can be 
more easily used by rehab patients even with severe upper 
extremity disability. Through the experiments, we found there 
are direct relationships between the human hand’s segment 
size and the correspondent sensor’s readings. In [18], we 
exploited this relationship for the sensors on the index, middle, 
ring, and pinky fingers and proposed a method using Artificial 
Neural Networks (ANNs) for the CyberGlove calibration. In 
fact, ANNs have been successfully applied for the calibrations 
of many systems in many different engineering fields for its 
usage simplicity and effectiveness in learning complex 
underlying input/output patterns [19] [20] [21] [22]. In this 
paper, we have retrained the neural networks with different 
input/output combinations that were missing in [18], such as 
hand width, and also extended the method to measure the 
thumb and abduction related sensors, which is physically 
different and more difficult from the other fingers. In addition, 
we’ve performed subjective evaluations with five common 
hand postures which show the effectiveness of the proposed 
method.  

The rest of the paper is organized as follows. Section II 
discusses the background and the related work. Section III 
details the procedures of our proposed method: measuring 
hand segment size, collecting calibration data, and training 
neural networks. Section IV presents the experimental 
evaluation and results of the proposed method. Finally, 
Section V concludes the paper and outlines the future work. 

 

II. BACKGROUND AND RELATED WORK 

There are a total of 22 sensors on the CyberGlove, which 
are placed at critical points for the measuring of finger flexing, 
abduction, thumb roll, palm arch, wrist yaw, and pitch as 
shown in Fig. 2a. The sensors are light, thin strips sewn into 
the glove fabric. The output of each sensor is an 8-bit unsigned 
integer in the range of 0-255. Since all joint movements are 
less than 180 degree, 8-bit output provides a sub-degree 
resolution. Given a sensor’s raw data reading x , its 

corresponding joint angle is calculated as 

 ( ),g r x    (1) 

where g and r  denote the sensor gain and offset respectively. 

Intuitively, the calibration process is to find this gain and 
offset for each sensor so that the user’s hand gesture in the real 
world can be faithfully reproduced in the virtual environment. 
For example, when the thumb tip and the index tip are touched 
together in the real world, there should be no obvious gap 
between the correspondent configurations in the virtual world. 
Since hand sizes for different users are different, the relative 
positions of sensors to the correspondent critical points of the 
hand are different across the users. Calibration is therefore 
required to adapt to each user’s hand size and to convert 
sensor output voltages to the joint angles. Even though most of 
the sensors are carefully decoupled by design, the number of 
sensors in total and their combined effects on the hand 
kinematics make the calibration not an easy task. For example, 
the readings from abduction sensors are affected by their 
adjacent meta-carpo-phalangeal (MCP) joints’ flexion 
movements.  

In [12], Griffin et al. present a calibration scheme to support 
dexterous tele-manipulation. The opening/closing movement of 
the end gripper on the robot manipulator is controlled by the 
distance between the thumb tip and the index finger tip. With 
their method, the user is first asked to place his/her thumb and 
index fingertips together and maintain a rolling contact while 
moving the fingers for 40 seconds. The readings from all of the 
related sensors during this period are recorded. After that, the 
separation distances between the two fingertips of a nominal 
hand kinematic model using the recorded data are calculated. 
Taking these separation distances as the errors to minimize, 
least squares method is then applied to tune all the related 
sensors’ gain and offset to achieve an error-minimizing model 
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Figure 2: (a) Instrumented CyberGlove and sensor indexing, and (b) hand 

segments indexing used in the research. 



for each user. Menon et al. extended this method to all five 
fingers for the applications of virtual reality simulation for 
astronaut training and telemedicine [13]. In [14], Fischer et al. 
propose a nonlinear learning calibration using a neural network 
technique for a dataglove to control a four-finger robotic hand. 
The neural network is trained to learn the mapping from the 
dataglove data to the fingertips’ positions. To get the actual 
Cartesian positions of the fingertips for the training, each of the 
four fingers is marked with a colored pin and two extra 
cameras are used. From the grabbed image and the known 
operating parameters of the cameras, the fingertips’ positions 
are then recovered. The method can achieve fingertip position 
errors of less than 1.8 mm. However, this method has a number 
of limitations. First, this calibration method needs time 
synchronization between the dataglove data and the visual data. 
Second, two calibrated color cameras are needed to recover the 
3-D Cartesian fingertips positions from the images. Third, only 
the positions of the fingertips are calibrated.  

In our VR-based rehabilitation applications, we are more 
interested in the global visual satisfaction of all the joints 
involved in the hand movements inside the virtual environment 
than only absolute fingertips positions. As such, the above 
methods do not apply to our VR Rehab system. For example, 
when a patient practices holding a cup and moving it on a shelf, 
the contacts between the hand and the cup cannot be simplified 
into the contacts between the fingertips and the cup. It is very 
possible that the fingertips positions are correct but the middle 
joints are not. 

There are other approaches that measure more than just the 
fingertips, but they also have their limitations. In [15] Kahlesz 
et al. propose a method to account for the cross-coupling 
effects between the MCP joints’ flex sensors and the in-
between abduction angles. For each abduction sensor, an iso-
surface is created based on its readings under three 
experimental trajectories: only the left flex sensor bended, both 
left and right flex sensors bended, and only the right flex sensor 
bended.  The values of this surface are stored in a look-up table 
for fast evaluation of the abduction angle. This is in contrast to 
the previously discussed methods which aim at the absolute 
accuracy of the joint angles between the virtual and the real 
hand. In [16], B. Wang et al. assume the effects from the 
neighboring flex movements are linear. Equation (1) then 
becomes 

 ( ) ( ),abd abd abd abd l l r rg r x k r k r b       (2) 

where abdr is the calibrating abduction sensor’s reading, abdg

and abdx are the gain and offset of the sensor, lr and rr are 

adjacent MCP flexion sensor readings, lk , rk , and b are the 

cross parameters for the neighboring flexion sensors. During 
calibration, the subject needs to move the neighboring MCP 
joints both independently and jointly. Least square method is 
then applied to get these cross parameters. Following the same 
strategy, the authors calibrate the thumb related sensors. At this 
time, the subject is asked to constraint his/her index and thumb 
tips on to a bottle cap to compute the cross parameters. Both 
[15] and [16] focus on the coupling effects among the sensors. 
However, as will be seen in this paper, for the Rehabilitation 

postures, the coupling effects among the sensors do not play an 
important role. 

In [23], Kahol et al. propose a human anatomy based 
Hidden Markov Model (HMM) to recognize everyday human 
movements. Instead of modeling the gestures as sequences of 
static poses, the author suggested that they can be modeled as 
events occurring in the segments and joints of the human body. 
The events in joints are detected as stabilization of the angles 
between adjacent segments at the joints while the events for 
segments are detected as local minima in the segmental force. 
These two human anatomy-based HMMs are coupled together 
using the body distance between the segments and the joints.  
This gives us the idea that the hand movements can also be 
modeled as the events occurring in the hand segments and 
joints. The relationship between the selected hand segments 
size and the correspondent sensors reading can be exploited for 
the calibration of the CyberGlove. 

III. THE PROPOSED METHOD 

In this paper, we calibrate the sensors on the CyberGlove 
using ANNs. There are three main reasons for choosing ANNs 
for the calibration of the CyberGlove. First, ANNs have been 
successfully applied for the calibrations of many systems in 
many different engineering fields. In [19], a neural network is 
used to learn the mapping between the actual distorted image 
points and the corresponding pinhole camera image points to 
reduce the nonlinear effects of an imaging system based on 
CCD cameras.  In [21], an industrial prototype microwave six-
port instrument has been calibrated using the ANN technique 
which is able to achieve high accuracy over a wide dynamic 
range. In [20], R. Anchini et al. propose a neural network based 
method for the reconstruction of 3-D coordinates of object 
using the 2-D coordinates in two images planes from a dual-
camera measurement system. In [22], J. M. Dias Pereira et al. 
apply an ANN for minimizing temperature drift errors of 
conditioning circuits and the experimental results show a 
significant improvement in the measurement accuracy. Second, 
we have noticed that there are some direct and consistent 
relationships between the human hand’s segment size and the 
correspondent sensor’s readings through the experiment. ANN 
is a very powerful tool to find such underlying pattern or 
relationships, even in a large dimension system. Third, once the 
final neural networks are found for each sensor, the generation 
of calibration data for any new subject is simple and fast. As 
mentioned above, simplicity of the calibration is very important 
for those patients with upper extremity weaknesses.  

In our proposed method, the only external hardware needed 
is just a regular 2-D digital camera. We take a picture of the 
subjects’ hand against a chessboard. From these 2-D images, 
we extract the sizes of the subjects hand segment. These hand 
segments sizes are the inputs for the neural networks. The 
chessboard here is used as the reference for the normalization 
of hand segments’ size, so the zoom of the camera or the 
rotations of the hand relative to the chessboard do not affect the 
testing results. For the training of ANN, the outputs are the 
manually collected calibration data for these subjects. Different 
neural networks were trained with these experimental data for 
the sensors on the CyberGlove. The selection of the final neural 



networks for each sensor is based on the minimum mean 
square error between the training sets and the evaluation sets. 

In this section, the proposed method is elaborated in three 
steps: Measuring hand segments sizes, collecting calibration 
data, and training of the neural networks.  

A. Measuring hand segments sizes 

In order to calibrate the CyberGlove output, the manually 
calibrated results have to be related to the actual subject’s hand 
size. We decided to take a picture of the subject’s hand and 
compute the size of the hand segments with Matlab’s image 
registration tool. The procedure is as follows. Predefined and 
visually identifiable locations on the hand, corresponding to the 
centre of each joint, the tip of each finger and the center of the 
wrist flexion, are marked with a color dot (we used blue for 
easy identification). The subject then places his/her hand 
against a chessboard. For that, there is no strict requirement on 
the camera except that the full hand image and chessboard is 
captured. This is also quite suitable for rehab patients, as no 
physical movement or hand action is necessary to take the 
picture. In Matlab, we create a same size chessboard as a 
reference and use the image registration tool to find the linear 
transformation between the raw image and this reference image 
as shown in Fig. 3. The image pixel selection tool is then used 
to get the positions of all the marked dots on the hand. From 
these dot positions, we compute the length of the segments 
defined in Fig. 2b. The segment sizes are normalized by using 
their ratio with the diagonal of the aligned image frame. This 
ensures that the measurements are independent of the camera 
resolution.  

We have collected 25 subjects’ right hand data for the 
training and the evaluation of the neural networks (22 men and 
3 women, aged 22-38). The average length and standard 
deviation for each segment is plotted in Fig. 4. For the same 
segments, our collected hand parameters are generally 
consistent with the hand anthropometric data from Buchholz et 
al. in terms of the ratio of the segment to the hand length [24]. 
The small differences are due to the fact that our positioning 
of the wrist point is closer to the MCP joint. This general 
consistency supports our method of extracting the hand 
parameters from a 2-D hand image. Different from popular 
hand models, we do not consider the position of the carpo-
meta-carpal (CMC) joint since it is not easy to be accurately 
located visually. 

 

    

B. Collecting  calibration data 

Using the traditional technique that comes with standard 
CyberGlove system, calibration data for subjects were 
obtained by manually adjusting the gain and the offset of each 
sensor using the device control utility of the CyberGlove 
driver software. The device control utility provides a graphical 
hand model which renders the hand configuration in real time 
as the sensor’s parameters are being adjusted. Fig. 5 illustrates 
the hand kinematic model used in our calibration. The 
kinematic model for the middle, the ring, and the pinky fingers 
are the same as that of the index finger. For sensors on each 
finger which measure the MCP, PIP, and DIP joints except the 
thumb, a subject is asked to keep the correspondent joint at 
zero degree first to get the offset for the sensor and then 
constraint at 90 degree to get the sensor gain according to (1). 
For some subjects who have difficulties in bending DP joints 
to 90 degrees, the constraints are set to 60 degrees. After the 
gain and the offset appear fine for these static poses, the 
subject then smoothly moves from one static pose to another 
static pose to make sure that there is no outlier situation during 
the hand movements. Using the same software, Lu and 
Huenerfauth designed a more detailed protocol for participants 
who are deaf and use American Sign Language [25]. Indeed, 
any calibration methods proposed by other researchers can be 
used here to collect the calibration data for the training of the 
neural networks. 

Using this “standard” method, each calibration takes 
around 5 to 10 minutes for a healthy person. This tedious 
calibration process is mainly caused by the coupling effects of 
the sensor gain and its offset for the final joint angle as 
described in (1) and it tires the subject quickly. To minimize 
the subject bias, we calibrate each subject 3 times and all the 
calibrations start with a randomly generated calibration data. 
Calibration does not stop until both the operator and the 
subject agree that the calibration is satisfactory. The 
calibration for the thumb usually takes a longer time compared 
with that of the other ones. The main difficulty with the thumb 
calibration is that its movement simultaneously affects both 
the thumb roll and the thumb-index sensors. Even with bigger 
efforts, the subjects are generally more satisfied with the 

 
Figure 4: Statistics of hand segment sizes based on 25 subjects. 

References to the segments can be found in Fig. 2. 

    

Figure 3: (a) Original image, (b) Aligned image 



calibration results of the index, the middle, and the ring 
fingers.  

 

Altogether, 75 sets of calibration data were collected for 
the training of the neural network. The mean and the standard 
deviation of the calibration data for all 19 sensors are plotted 
in Fig. 6a and Fig. 6b. Three sensors will not be covered in 
this paper: Sensor 20 which measures how much the pinky 
rotates across the palm toward the thumb, and Sensors 21 and 
22 at the wrist which measure pitch and yaw of the palm 
relative to the wrist. Readings from Sensor 20 are not 
consistent while Sensor 21 and 22 are not considered because 
their relative positions to the hand vary every time the user 
puts the glove on. 

It is interesting to see that Sensor 11 for middle-index 
abduction has the largest standard deviation for the sensor 
offset. At the same time, it has the smallest mean for the 
sensor gain. Considering the coupling effects between the 
sensor gain and offset for the final joint angle as shown in (1), 
we cannot conclude that Sensor 11 has the largest variation 
among all the sensors across all the subjects. In fact, all 4 
abduction sensors (Sensor 4, 11, 15, and 19) have a relatively 
large variation for the offset but a small mean for the gain. 
This is due to the fact that these abduction sensors are bending 
at the rest position while other sensors are flat at the rest 
position as illustrated in Fig. 2a. In this regard, the offset and 
gain of the sensor does vary for different hand sizes. It is 
exactly this relationship between the hand size and the 
correspondent calibration results we are exploiting in this 
paper.  

  

TABLE I.  INPUT-OUTPUT RELATIONSHIP FOR NN TRAINING 

Input 

Hand Segments(Fig. 2b) 

Output 

Sensor Number (Fig. 2a) 

1,2,3,24 Index⁰ 5, 6, 7 

4,5,6,24 Middle⁰ 8,9,10 

7,8,9,24 Ring⁰ 12,13,14 

10,11,12,24 Pinky⁰ 16,17,18 

13,14,19,24 Thumb⁰ 1,2,3 

19, 20,24 Thumb-index* 4 

20, 21,24 Middle-index* 11 

 21, 22,24 Ring-middle* 15 

 22, 23,24 Pinky-ring* 19 

⁰3 sensors on each finger, *abduction sensor, Segment 24 is the hand width 

calculated by adding segments 16, 17, and 18. 

C. Training the Neural Networks 

There are 3 sensors on each finger except the thumb for the 
measurements of the outer, the middle, and the inner joints 
respectively. For the thumb, there are also 3 sensors: the outer, 
the inner, and the roll sensors. Therefore, the networks used in 
the experiments have 3 inputs and 6 outputs for each finger 

 
(a) 

 
(b) 

Figure 6: Statistics of sensor values based on 28 subjects’ calibration 
data: (a) offset, and (b) gain 

 
Figure 5: Hand kinematic model for calibration adapted from [25]. Refers 

to Fig. 2a for sensor indexing 



respectively. For each of the 4 abduction sensors, there are 3 
hand segments contributing to the final joint angle. The 
relationship between the input and the output of the training 
neural networks are listed in Table I. Other machine learning 
methods could be employed to learn the relationships but here 
we use Artificial Neural Networks (ANN) given our previous 
positive experience with them [26]. 

There are a total of 75 sets of calibration data from 25 
subjects (3 calibrations each) for the combined training and 
testing of the neural networks. The types of networks used in 
these experiments are regular feed-forward networks. The first 
obstacle faced was to properly choose the ANN architecture to 
solve our problem. We automate this selection task by using 
the workflow shown in Fig. 7. The architecture of the 
individual ANN is selected at random within a range of 
possible architectures. We allowed either 1 or 2 hidden layers 
with between 2 to 10 neurons each, and trained for 100 
epochs, on 50-80% of the whole data (39 sets) – the rest were 
set aside for testing. The choice of these parameter ranges are 
believed to be sufficient for the type of relationship being 
modeled, as suggested by ANN guidelines [27] [28]. 
Levenberg-Marquardt learning algorithm is used for its good 
learning time in our testing. This type of ANN generation and 
training was performed 50 times, keeping the 5 best networks, 
the ones with the least mean square error on the validation 
data compared with the original calibration results. The final 
generated calibration data is the averaged results of these five 
best neural networks. It should be noted that the whole 
procedure of obtaining calibration data, generating the ANNs, 
training, and testing them will yield results specific to the 
system from which the data originated; they might not apply to 
other systems. 

 

IV. RESULTS AND DISCUSSIONS 

The mean and the standard deviation of the error between 
the final testing results (output of the ANNs for all subjects) 
and the original calibration data are plotted in Fig. 8a and Fig. 

8b respectively. For the sensor’s offset calibration, the average 
mean error for all 19 sensors is 0.4642. Among them, four 
abduction sensors have the largest error standard deviations. 
This conforms to the original collected calibration data where 
the abduction sensors also have the largest offset standard 
deviations as shown in Fig. 6. Three thumb sensors have 
relatively large error standard deviations compared with those 
on the other four fingers. For the analysis, we normalize the 
error standard deviation in terms of its ratio to the 
correspondent sensor’s mean offset. The result is plotted in Fig. 
9. In this regard, Sensor 1 (thumb roll) and Sensor 4 (thumb-
index abduction) have the largest errors of 0.2586, and 0.2543 
respectively.  If we only consider the sensors on the index, the 
middle, the ring, and the pinky fingers, the average error ratio 
for the sensor offset is 0.0645. For the sensor’s gain calibration, 
the average mean error for all 19 sensors is 0.0001. Three 
thumb sensors have the largest standard deviation errors. After 
the normalization, the ratio of error standard deviation to the 
correspondent sensor’s mean gain is plotted in Fig. 10.  Sensor 
11 (middle-index abduction) has the largest error of 0.3045. On 
the other hand, referring to Fig. 6b, the mean of Sensor 11’s 
gain is actually the smallest, so its effects on the final joint 
angles are not so formidable. If we only consider the sensors on 
the index, the middle, the ring, and the pinky fingers, the 
average error ratio for the sensor gain is 0.0731.   

If we analyze the offset and the gain errors between the 
testing results and the original calibrated data together, they are 
quite uniform for all the sensors on the fingers excluding the 
thumb. For the thumb sensors, there are two main reasons for 
the large error variations. First, we did not take into account the 
position of the CMC joint in our hand parameter extraction 
while it is directly related to the thumb roll and the thumb-
index abduction sensor. Instead, we expected the neural 
networks to learn the relationship through the sizes of 
Segment 19, 20, and 24 (Referring to Fig. 2b). However, since 
we were not strict on the position of the thumb when the hand 
pictures were taken, the variances of Segment 19 do not reflect 
the real situation faithfully. Second, as aforementioned, the 
collected calibration data for thumb roll and thumb-index 
abduction sensors are not as good as other sensors. Since both 
the input and the output for the training of the neural networks 
for the thumb sensors suffer from the reliability, it is not 
surprising to have large error variations among the related 
sensors. 
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Figure 7: ANN architecture generation workflow 



 

 

 

 

A. Subjective Evaluation 

The overall performance of the proposed method is tested 
both on subjects whose data were used and on subjects whose 
data were not used in the training process. From their hand 
parameters extracted from the pictures, the corresponding 
calibration data were generated using the trained neural 
networks. Altogether, 15 subjects were involved in the testing. 
Five of them were used in the training set. The subjects gave a 
score for sensors on each finger with a value from 1 up to 5 
inclusive, with 1 being the most negative answer, 3 being 
acceptable and 5 being the most positive one. Five gestures 
used in the manually collection of the calibration data were 
evaluated. The average results are listed in Table II. 

 

Table II: Subjective Evaluation Results 
Posture T I M R P A TA Ave 

 

4.70 4.38 4.5 4.54 4.25 4.42 4.62 4.48 

 

4.62 4.08 3.66 4.21 4.20 4.25 4.54 4.23 

 

4.41 4.0 3.79 4.04 4.29 4.5 4.41 4.20 

 

4.0 4.38 3.95 4.45 4.25 3.95 4.16 4.16 

 

4.29 3.87 3.91 3.92 3.83 3.79 4.33 3.99 

   T: thumb; I: Index; M: middle; R: ring; P: pinky;  
   A: abduction sensors; TA: thumb abduction sensors; Ave: Average 
 

In general, the results for all five postures are positive which 
proves the relationship between the measured hand segment 
size and the calibration parameters. It is reasonable that the 
first posture gets the highest average score since all the sensors 
are in the zero state. Another noticeable fact is that the results 
for the subjects in the training sets are better that those not in 
the training sets. This suggests that more subjects are needed 
for more distributed training sets. Posture 5 is mainly used for 
the testing of the 5 abductions sensors. Interestingly, this 
posture also affects the reading for the MCP joints since these 

 
Figure 10: Ratio of the gain error standard deviation to the corresponding 

sensor mean gain 

 
Figure 9: Ratio of the offset error standard deviation to the corresponding 

sensor mean offset 

 
(b) 

Figure 8: Statistics of test results and the original calibration data: (a) 
Offset error, and (b) Gain error 

 

 
(a) 



flexion sensors are bended in another direction. There are 
occasionally not acceptable results for some joints. 

B. Comparison with Existing Methods 

Compared with the standard calibration technique for 
CyberGlove, which takes about 5 to 10 minutes, our proposed 
method is very simple to use and the experimental results are 
also promising. The only external device needed is a 2-D 
digital camera to take the subject’s hand picture. The whole 
process can be easily automated and lasts no more than a 
minute. This simplicity and quickness is extremely important 
to the CyberGlove based haptic rehabilitation system where 
the patient may have difficulties to finish the calibration if the 
procedure takes too long or complex. 
       No direct comparison can be made between our work and 

that in [12] and [13] since the collection of the calibration data 

for the training of the neural network is different. In those two 

papers, the authors focused on the coupling effects among the 

sensors while those coupling effects are not considered in the 

factory manual calibration software used for our collection of 

the training data. However, for the five tested postures, the 

coupling effects among the sensors do not play important 

roles. 

Finally, it should be noted that the proposed method is not 

meant to replace current techniques. Instead, it is a new 

approach where any existing calibration techniques, including 

[15] and [16], can be used as input to the training of the neural 

networks. We do believe the inclusion of these coupling 

effects for the collection of the training data will further 

improve the experimental results and expand the application of 

the proposed method to more diversified hand postures. 
 

V. FUTURE WORK AND CONCLUSION 

Currently calibration of the CyberGlove is time-consuming 
and depends on the experience of the operator on the 
calibration routine. A good calibration may take about 5~10 
minutes for a single user due to the large number of DOFs of 
the hand and the number of sensors on the data glove. This 
tedious calibration process should be especially avoided in 
VR-based rehabilitation applications where the patients may 
not be able to complete the physical movements required for 
the calibration. In this paper, we proposed a practical 
calibration method for the CyberGlove using neural networks. 
The inputs to the neural networks are the sizes of the hand 
segments which can influence the corresponding sensors of the 
CyberGlove, and the outputs are the offset and the gain for 
each sensor. In this way, only a 2-D hand picture is required 
for the generation of the required calibration data. Another 
advantage of the method is that it is not a replacement of the 
calibration techniques proposed by other researchers. Any 
other calibration methods can be used for the collection of data 
sets for the training of the neural networks. 

In our current implementation, we have manually collected 
25 subjects’ calibration data for the training of the neural 
networks. Different neural networks with random parameters 
have been generated with random sets of the training data and 
the testing data. The best 5 neural networks for each sensor 
which had the least mean square errors between the training 
set and the testing set were saved. We’ve tested the resulting 

neural networks for 15 subjects using 5 common hand 
postures. The subjective results are very positive. The error 
analysis shows that the variations for the sensors on the index, 
the middle, the ring, and the pinky finger are quite uniform 
while the thumb and abduction related sensors have larger 
variations. However, the performance for the subjects in the 
training set is slightly better than those not in the training set. 
This suggests that more distributive training sets are needed.     

As we have noticed during the calibration process, the 
thumb-index abduction sensor and the thumb roll sensor are 
the most time-consuming due to their coupling effects. We 
have also noticed that the thickness of the human hand varies a 
lot. We also did not consider the cross-coupling factors such 
as adjacent MCP joints’ flexion movement on the abduction 
sensors. We believe that the inclusion of these factors will 
further improve the results and expand the application of the 
proposed method for more diversified hand postures. Finally, 
we will automate the whole calibration procedure and 
integrate it into our rehabilitation system. 
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