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Introduction:  The ability to continuously monitor levels of task engagement and mental workload in an 
operational environment could significantly enhance performance, productivity and safety in military and 
industrial settings.  This study establishes feasibility of operational monitoring with electroencephalographic 
(EEG) indices of engagement and workload acquired unobtrusively and quantified during performance of 
cognitive tests. Methods:  EEG was acquired from 80 healthy participants’ subjects with a wireless sensor 
headset (F3-F4,C3-C4,Cz-POz,F3-Cz,Fz-C3,Fz-POz) during one or more tasks including: multi-level 
forward/backward-digit-span, grid-recall, trails, and mental-addition, 20-minute-vigilance and image/verbal 
learning and memory tests.  EEG metrics for engagement and workload were calculated for each 1-second of 
EEG using quadratic and linear discriminant function analyses of model-selected variables derived from EEG 
power spectra (1-Hz bins from 1-40Hz).  Results:  Across subjects, engagement but not workload decreased over 
the 20-minute-vigilance test. Engagement and workload were significantly increased during the encoding 
period of verbal and image-learning & memory when compared to the recognition/recall period.  Workload but 
not engagement increased linearly as level of difficulty increased in forward and backward-digit-span, grid-
recall and mental-addition tests.  EEG measures correlated with both subjective and objective performance 
metrics.  Discussion:  These data suggest that EEG-engagement reflects information-gathering, visual scanning 
and sustained attention.  EEG-workload increases with increasing working memory load and during problem-
solving, integration of information, analytical reasoning and may be more reflective of executive functions.  
Inspection of EEG on a second-by-second timescale revealed associations between workload and engagement 
levels when aligned with specific task events, providing preliminary evidence that second-by-second 
classifications reflect parameters of task performance. 

 

 

 1. INTRODUCTION 

Information overload is a fact of life in the 
contemporary global networked society.  Potentially 
rich sources of data are underutilized because they 
cannot be sorted rapidly and organized efficiently 
enough to accommodate the capacity of the human 
information processing system.  The human 
processor can also be seriously compromised by 
fatigue, stress, boredom, illness and other factors.  
One approach to expanding the capacity of human 
information processing is to radically rethink the 
design of human-machine system interfaces to 
optimize the flow and exchange of data between 
humans and machines.  This approach has been 
termed “neuroergonomics,” an interdisciplinary area 
of research and practice that integrates 
understanding of the neural bases of cognition and 
behavior with the design, development and 
implementation of technology (13, 21, 25, 26).  The 
vision of neuroergonomics is to use knowledge of 

brain-behavior relationships to optimize the design 
of safer, more efficient work environments that 
increase motivation and productivity.  A 
complementary result of this endeavor is to better 
inform neuroscience regarding real-world human 
performance (24).   

One promising avenue of research in 
neuroergonomics involves developing the capability 
to continuously monitor an individual’s level of 
fatigue, attention, task engagement and mental 
workload in operational environments using 
physiological parameters (1, 4, 10, 14, 23, 30-32, 37).  
These physio-cognitive monitoring systems have a 
wide range of potential applications that could 
significantly enhance performance, productivity and 
safety in military and industrial settings, including 
evaluation of alternative interface designs, enhancing 
skill acquisition and optimizing the ways humans 
interact with technology (26).  Several pioneering 
investigations conducted as part of the Defense 
Advanced Research Projects Agency (DARPA) 

EEG Correlates of Task Engagement and Mental Workload in Vigilance, Learning 

and Memory Tasks 

Chris Berka, Daniel J. Levendowski, Michelle N. Lumicao, Alan Yau, Gene Davis, Vladimir T. Zivkovic, 
Richard E. Olmstead, Patrice D. Tremoulet, and Patrick L. Craven 

 
 Advanced Brain Monitoring Inc., University of California, Los Angeles, United States 
 

Development of the B-Alert Cognitive Workload Metric 

 



2 
 

 
 

Augmented Cognition program explored the 
feasibility of integrating real-time physiological 
indices of user workload into the Human Computer 
Interface (HCI) loop to assist in managing 
information flow in complex task environments.  
Physiological indicators identified when a user was 
overloaded or underloaded and triggered greater 
information dissemination or task re-allocation.  
Preliminary results suggested that performance could 
be enhanced in these closed-loop model systems (9, 
22, 35).  

Heart rate variability, oculomotor activity, 
pupilometry, functional near infrared imaging (fNIR) 
and galvanic skin response have been employed to 
detect cognitive state changes; however, the 
electroencephalogram (EEG) is the only physiological 
signal that reliably and accurately reflects subtle 
shifts in alertness, attention and workload that can be 
identified and quantified on a millisecond time-frame.  
Significant correlations between EEG indices of 
cognitive state changes and performance have been 
reported based on studies conducted in laboratory, 
simulation and operational environments (4, 7, 8, 11, 
12, 18-20, 27, 32, 33, 38).  The conventional methods 
employed to analyze the EEG generally involve 
computation of the power spectral densities within 
the classically defined frequency bands including 
alpha, beta, theta, delta and gamma or ratios between 
these frequency bands (10, 31, 32, 37).  Alternatively, 
the amplitudes of the N100 and P300 components of 
the event-related potential have been employed in 
some cognitive assessment models (34).  The use of 
the event-related potential for operational 
applications has several limitations including the 
requirement for introducing “probe” stimuli into real-
world tasks to elicit the potentials and the need for 
averaging of single trials across scalp sites or over 
time. 

Advanced Brain Monitoring (ABM) implemented 
an integrated hardware and software solution for 
acquisition and real-time analysis of the EEG and 
demonstrated feasibility of operational monitoring of 
EEG indices of alertness, engagement and mental 
workload.  The system includes an easily-applied 
wireless EEG system designed with the goal of future 
operational deployment.  A novel analytical approach 
was developed that employs linear and quadratic 
discriminant function analyses (DFA) to identify and 
quantify cognitive state changes using model-selected 
variables that may include combinations of the power 
in each of the 1-hz bins from 1-40hz, ratios of power 
bins, event-related power and/or wavelet transform 
calculations.  This unique modeling technique allows 
simultaneous selection of multiple EEG 
characteristics across brain regions and spectral 

frequencies of the EEG, providing a highly sensitive 
and specific method for monitoring neural signatures 
of cognition in both real-time and off-line analysis.   

ABM has successfully applied this method to 
classify 1-sec or 0.5-sec segments of EEG to identify 
drowsiness-alertness (15-17) mental workload (4, 5), 
spatial and verbal processing in simple and complex 
tasks, (1) to characterize alertness and memory in 
patients with sleep apnea (6, 36) and to identify 
individual differences in susceptibility to the effects 
of sleep deprivation (2).  The ABM model system has 
also been successfully integrated into real-time, 
closed-loop automated computing systems to 
implement dynamic regulation and optimization of 
performance during a driving simulation task and in 
the Aegis C2 and Tactical Tomahawk Weapons 
simulation environments (1, 3, 5). 

There are several challenges that must be 
overcome by developers of cognitive state monitors.  
First, it is necessary to define a set of relatively pure 
tasks that consistently elicit the targeted cognitive 
states to provide calibration of the physiological 
measures and to validate the methods for cognitive 
monitoring.  Validation of cognitive state measures 
generally involves experimental manipulation of task 
demands to induce cognitive state changes, objective 
measurement of performance metrics (e.g. accuracy, 
reaction time) and subjective measures that allow 
participants to describe their perceived level of 
difficulty as well as the amount of effort exerted in a 
given task.  The cognitive state measures must also be 
validated across subjects and adjusted to account for 
individual differences when required. 

This paper presents evidence for the utility of two 
EEG-based measures of cognitive states, task 
engagement and mental workload.  Both measures 
increase as a function of increasing task demands but 
the engagement measure tracks demands for sensory 
processing and attention resources while the mental 
workload index was developed as a measure of the 
level of cognitive processes generally considered 
more the domain of executive function. 
 
2. METHODS 
 

EEG was acquired from 80 participants.  The data 
from 13 participants used for model development 
were collected at the Lockheed-Martin Advanced 
Technology Lab.   The study protocol was approved in 
advance by the Chesapeake Research Review, Inc.   
The data from 67 subjects obtained by Advanced 
Brain Monitoring and used for cross validation were 
acquired using protocols for 3 studies approved in 
advance by the Biomed IRB.  Each subject provided 
written informed consent before participating.   
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All participants wore the wireless sensor headset 
including the following bi-polar sensor sites:  F3-F4, 
C3-C4, Cz-PO, F3-Cz, Fz-C3, Fz-PO.  Participants 
completed one or more of the following tests:  a 20-
minute 3-choice-vigilance test, an image learning and 
recognition memory test followed by an interference 
session where previously learned items appear but 
are no longer in the learning set, a verbal paired 
associate learning and memory test and multi-level 
forward and backward digit-span tests, grid-recall 
(spatial memory) and mental-addition tests.  EEG 
metrics (values ranging from 0.1-1.0) for 
“engagement” and “mental workload” were 
calculated for each 1-second epoch of EEG using 
quadratic and linear discriminant function analyses 
of model-selected EEG variables derived from power 
spectral analysis of the 1-Hz bins from 1-40Hz. 

Bi-polar recordings were selected in order to 
reduce the potential for movement artifacts that can 
be problematic for applications that require 
ambulatory conditions in operational environments.   
Limiting the sensors (seven) and channels (six) 
ensured the sensor headset could be applied within 
10 minutes.  The sensor montage was selected after 
conducting experiments using monopolar recordings 
and selecting the montage and channels that 
provided the best mental workload discrimination 
across subjects, tasks and conditions.    

Identification and decontamination of spikes, 
amplifier saturation and environmental artifacts and 
computation of the power spectral density were 
applied using procedures previously described (4).  
Two new wavelets procedures were also applied to 
these data to detect excessive muscle activity (EMG) 
and to identify and decontaminate eye blinks.  Once 
the artifacts are identified in the time-domain data, 
the EEG signal is decomposed using a wavelets 
transformation.  Thresholds are developed for 
application to the wavelet power in the 64 – 128 Hz 
bin to identify epochs that should be rejected for 
EMG.  The wavelets eye blink identification routine 
uses a two-step discriminant function analysis 
applied to the absolute value of the 0-2, 2-4, 4-8, 8-16, 
and 16-32 Hz wavelet coefficients from the 50th, 40th, 
30th, 20th and 10th data points before and after the 
target data point in FzPOz and CzPOz.  The DFA 
classifies each data point as a control, eye blink or 
theta activity.  Multiple data points that are classified 
as eye blinks are then linked and the eye blink 
detection region is established based on a fixed 
distance before the start (e.g., 50 data points) and 
after the end (e.g., 50 data points) of the blink.    

Decontamination of eye blinks is accomplished by 
computing mean wavelet coefficients for the 0-2, 2-4 
and 4-8 Hz bins from nearby non-contaminated 

regions and replacing the contaminated data points.  
The EEG signal is then reconstructed from the 
wavelets bins ranging from 0.5 to 64 Hz.   Zero values 
are inserted into the reconstructed EEG signal at zero 
crossing before and after spikes, excursions and 
saturations.  EEG absolute and relative power 
spectral density (PSD) variables for each 1-second 
epoch using a 50% overlapping window are then 
computed.  The PSD values are scaled to 
accommodate the insertion of zero values as 
replacements for the artifact.   

Description of the Tasks: Five tasks were used by 
Lockheed-Martin to acquire the model development 
data set.  

For the Addition task, participants were asked to 
add two numbers with varying numbers of digits in 
addends, and report the sum by typing digits through 
the keyboard. This task requires subjects to employ 
working memory and executive function resources.   

During Grid location, an NxN grid of squares 
where N ranged from 3 – 6, is presented with some 
grids containing missiles, and participants are 
prompted to identify which squares contained 
missiles by clicking in the squares in an empty grid.  
This task requires spatial working memory 
resources.   

In the Trail-making task, subjects are presented 
with a series of labeled dots on a computer screen, 
and asked to ‘draw a trail’ by clicking on the dots in 
series. The labels may be numbers or letters or some 
other code, and subjects are required to click on them 
in order.  The first dot in the series is always pre-
selected or otherwise highlighted for the subject. This 
task requires subjects to employ spatial memory and 
executive function resources.  

In Forward digit span (FDS), series of single 
digits of increasing lengths are presented and the 
participant responds by entering the digits in the 
order presented.  This task requires verbal working 
memory resources.  Similarly, the Backwards digit 
span (BDS) presents a series of single digits of 
increasing lengths and requires entering digits in the 
reverse order from the one presented.   

Subjective estimates were acquired from the 13 
participants evaluated in the Lockheed-Martin study 
using a survey administered to the participant 
following each difficulty level of each task.  Responses 
to the following questions were rated on a 100-point 
scale:  How much mental energy did you exert on this 
task level? (almost none… a whole lot)  Objectively, 
how difficult was this task level? (quite easy… 
extremely difficult) and How much attention did you 
focus on this task level? (very little… I was extremely 
focused). 
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The cross validation protocols included the FDS 
and BDS described above, and four additional tasks. 

The 3-Choice Vigilance Task (3C-VT) 
incorporates features of common neuropsychological 
tests of vigilance, including simple or choice reaction 
time tests and continuous performance tests (29).  
The 3C-VT requires subjects to discriminate primary 
(70%) from two secondary (30%) geometric shapes 
presented for 0.2 seconds and respond over a 20-
minute test period.  A training period is provided 
prior to testing to minimize practice effects.   

The Image, Verbal and Interference Learning 
and Memory Tests evaluate attention, distractibility 
and recognition memory for images, image-number 
pairs or word pairs.  During the training session, a 
group of 20 images are presented twice.  The testing 
session presents the 20 training images randomly 
interspersed with 80 additional images. Subjects 
must indicate whether or not the image was in the 
training set.  Five equivalent image categories were 
developed including animals, food, household goods, 
sports and travel.  In the Standard Image 
Recognition, the subject must memorize 20 images 
and identify the 20 training images amidst 80 
previously unseen testing images.  For the 
Interference Image Recognition, a set of 20 new 
images must be memorized and distinguished from 
the first set of training images and 60 images 
previously displayed in the Standard.  The Verbal 
Paired Associate test (VPA) is identical to the 
Standard, substituting word pairs for images.  Easy 
(e.g. black-white, dog-cat) and difficult (e.g. table-
horse, fence-towel) word pairs are included in each 
test. 

The 67 participants in the studies conducted at 
Advanced Brain Monitoring completed a subjective 
ratings questionnaire after each level of the Forward 
digit span and Backward digit span. Each participant 
was asked to rate the difficulty of the level they just 
completed as either very difficult, difficult, neither 
easy nor difficult, easy, or very easy. 

Development and Validation of the EEG-Mental 
Workload Index: The investigators had previously 
developed and validated an EEG measure that was 
highly correlated with task demands including the 
level and complexity of stimulus processing and the 
requirement for allocation of attentional resources.  
This EEG metric termed “task engagement” was 
found to be directly correlated with task load in 
simple vigilance and memory tasks and in more 
complex simulation tasks including the Warship 
Commander, a simulated naval command and control 
task and in an Aegis radar operations simulation 
environment (4, 5).  Subsequent applications of the 
EEG metric revealed that it did not increase as a 

function of increasingly difficult mental arithmetic, 
during increasingly complex analytical reasoning, 
during multiple levels of difficulty in a Sternberg 
memory task, during the five levels of a forward or 
backward digit span test or in a multi-level grid 
location spatial memory task.   

This paper presents the development and 
validation of a new EEG index of mental workload, 
designed to provide a measure of the level of 
cognitive processing associated with tasks involving 
executive function, working memory and analytical 
reasoning.  The engagement index and the mental 
workload index were evaluated across multiple tasks, 
subjects and conditions.  The final set of EEG 
variables selected to provide the optimal 
classification of EEG-engagement and mental 
workload are listed by channel and frequency bin in 
Table 1.  

The Lockheed-Martin data set including EEG and 
performance measures from 13 subjects during five 
tasks were used to develop and validate the mental 
workload gauge.  The tasks were performed in the 
following order:  grid, forward digit span, mental 
arithmetic, backward digit span and trails. Each task 
had between three and six levels of difficulty.  For 
example, during the backward digit span, level one 
required the subject to memorize 2 digits and a total 
of 20 digit sets were presented.  Level two was 4 
digits and 12 digit sets, level 3 was 6 digits and 8 digit 
sets, and level 4 was 8 digits and 5 digit sets.  For all 
of the Lockheed-Martin tasks, participants were 
allowed to self-pace with respect to the time needed 
to complete each problem.   This differed from the 
testing done at ABM where all tests were performed 
under consistent time constraints. 

Two objective performance measures were 
derived, the percentage of complete correct answers 
for each task and level, and the percentage of 
partially correct answers.  For example, seven of nine 
correct numbers in a 9-digit forward digit span 
resulted in a 0.78 partial correct score for that 
problem.  

The workload gauge was developed using a linear 
discriminant function with two classes, low and high 
mental workload.  Different combinations of tasks 
and levels were evaluated as training data to derive a 
two-class workload gauge (i.e., low and high) that 
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generalized across individuals.  Two models were 
developed and employed to accommodate individual 
differences in the EEG across subjects.  If necessary 
(when the EEG data are to be used in real-time as 
inputs to a closed loop system), the determination of 
which workload model best fits an individual can be 
made a-priori by evaluating the distribution of the 
probability of high workload and performance across 
a baseline four-level backward digit span.  In order to 
compute workload when only the F3F4 channel was 
contaminated with EMG, alternative workload 
models were developed using inputs from five of the 
six channels (i.e., excluding F3F4). 

There are three primary methods used to validate 
physiological measures of mental workload.  The first 
is inherent in the task design; the tasks used to 
validate must include incrementally increasing levels 
of difficulty to elicit increasing levels of mental 
workload required by the participant.  The second 
method of validation is to correlate objective 
measures of task performance with the EEG Index 
and the final method is to compute the correlations 
with the subjective reports.  All three methods have 
strengths and weaknesses, but arguably each can 
contribute to the overall validation of the EEG 
metrics. 

 
3. RESULTS 
 

Figure 1 presents the mean workload levels as 
classified by the EEG model for each level of difficulty 
for the grid, addition, forward and backward digit 
span and trails tasks with the associated mean 
subjective ratings for each level of each task.  EEG 
workload levels accurately tracked the intended 
pattern of the task design and the subjective ratings 
for all tasks except the Trails task. Figure 2 presents 
the same EEG workload data with the associated 
mean objective performance scores.  As expected, 

performance decreases as a function of task difficulty 
with the exception of the Trails task where 
participants achieved perfect performance on all 
three levels of the Trails.  In the Trails task, the EEG 
workload was more closely aligned with the objective 
performance measure than the task design levels or 
subjective rating levels.  All participants achieved a 
perfect score for the Trails task because it was 
impossible to complete Trails task until the 
participant responded correctly.   

The mean EEG-engagement values for each level 
of difficulty for the grid, addition, forward and 
backward digit span and trails tasks are presented in 
Figure 3.  Although EEG-engagement levels changed 
across the levels of the tasks, the relationships were 
not linearly related to the task difficulty levels as 
demonstrated for the EEG-workload measures (based 
on repeated measures Analysis of Variance (ANOVA). 

 Canonical correlations were employed (CANCORR 
macro in SPSS, Release 8.0) to calculate a single 
aggregate measure of association in the model 
development data set between the EEG-workload and 
subjective and objective measures.   As opposed to 
multiple bi-variate correlations, canonical 
correlations are linear functions that maximize the 
relationship between the two sets of variables.  In 
this case, canonical correlations were calculated for 
each individual across the 23 tasks/levels (Figure 1) 
comparing the EEG-workload variable sets 
(%classified high workload and probability of high 
workload) to the objective and subjective variable 
sets (%complete correct, %partial correct, assigned 
level of difficulty, and subjective perception of 
difficulty).  Although as a multivariate test, sample 
size recommendations generally specify a larger 
number of observations than tested here, the 
canonical correlation was utilized in this 
circumstance less as an inferential test and more as a 
metric of association.  As outliers can have a large  

Figure 1.  Mean EEG-workload and mean subjective rating scores 
for each difficulty level of the grid, FDS, mental arithmetic, BDS, 
and trails tests for the model development group (n=13). 

Figure 2.  Mean EEG-workload and mean objective performance 
scores for each difficulty level of the grid, FDS, mental arithmetic, 
BDS, and trails tests for the model development group (n=13). 
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impact on the calculations, all cases were examined 
for extreme values using Mahalanobis distance.  
There were no outliers noted.   The box plot in Figure 
4 illustrates the results of the Canonical correlations 
for this initial data set.  Chi-squared tests were 
significant for the canonical correlations for 9 of the 
13 subjects. 

Cross-validation of the EEG-mental workload 
measure was completed with a new group of 17 
participants evaluated at Advanced Brain Monitoring 
using the forward and backward digit span tests.  The 
ABM versions of the digit span tasks were modified to 
limit the amount of time to respond.  Two difficulty 
levels were added to the BDS because prior work 
suggested that some participants became frustrated 
and “gave up” at some point in the BDS and there was 
significant variability in when this occurred. The 
additional levels provided a full spectrum of EEG for 
all participants prior to and after giving up on the 
task. 

Figures 5 and 6 present the mean workload levels 
as classified by the EEG model for each level of 
difficulty for the forward and backward digit span 
tasks with the associated mean subjective ratings and 
objective performance for each level of each task.  

These data provide confirmation of the validity of the 
EEG measure across subjects for the forward and 
backward digit span tests. The mean EEG-
engagement values for each level of the digit span for 
the cross-validation group are presented in Figure 7.  
These data suggest changes in engagement that are 
not linearly related to task difficulty and that a more 
complex relationship may exist between the EEG-
engagement index and the task levels.   

Evaluation of the EEG engagement and workload 
measures was also conducted during the 3C-VT (see 
Figure 8).  Mean reaction times, EEG-engagement and 
EEG-workload levels were calculated for each of the 
5-minute quarters of the 20-minute test.  Repeated 
measures ANOVA was performed across the 4 
quarters.  Probability values reported are based on 
the Greenhouse-Geisser corrected degrees of 
freedom.  As expected, repeated measures ANOVA 
revealed significant effects over time with reaction 
time increasing (F=104.92, p=0.001) and engagement 
decreasing (F=216.08, p=0.001).  However, the 
workload levels did not show a significant linear 
increase over the 20-minute test.  Effect sizes were 
large for reaction time (Cohen’s d=1.11) and EEG-
engagement (Cohen’s d=2.83). These data confirm 
previous reports by the investigators that during the 
20-minute test, subjects evidence increasing reaction 
time and a corresponding decrease in the EEG-
engagement level.  This effect becomes increasingly 
evident as a function of sleep deprivation or fatigue 
(6, 16, 36).  The fact that the mental workload index 
did not change over time was expected in the 3C-VT, 
a task with minimal demands on working memory or 
complex cognitive processing. 

For the learning and memory tests, mean EEG-
engagement and workload were computed for each of 
the encoding and recognition periods of three types 
of learning and memory tests (standard, interference 
and verbal).  For EEG-engagement, repeated 

Figure 3.  Mean EEG-engagement for each difficulty level of the grid, forward digit span, mental arithmetic, backward digit span and 
trails tests for the model development group (n=13). 
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Figure 4. Results for individual subjects (n=13) from the 
Canonical correlations comparing EEG-workload with objective 
and subjective measures.  The box plots display the median, 
with ~50% of the data represented by the shaded area, and 
~99% of the data within horizontal bars (outlier cutoff points).   
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measures ANOVA indicated a significant effect for 
task type (F=13.65, p=0.001) and 
encoding/recognition (F=15.176, p=0.001) (Figure 
9).  For EEG-engagement, the interference was 
significantly different from both standard  (F=22.39, 
p=0.001) and the verbal  (F=11.05, p=0.002), 
whileverbal was also significantly different from 
standard  (F=4.73, p=0.034).   

 The task type effect relates to the level of task 
difficulty.  Confirmation of the task difficulty 
differences was observed in the significant main 
effect for task type (F=44.56, p=0.001) for percentage 
correct performance (Figure11).  This increase in 
task difficulty is also reflected in the increase in EEG-
engagement (Figure 9).    

The EEG-workload measures were also 
significantly increased during the encoding period of 
all memory tests when compared to the recognition 
period (see Figure 10).  However, only the 
encoding/recognition effect for EEG-mental workload 
was significant (F=34.79, p=0.001). These data 
suggest that the EEG reflects an increased allocation 
of attentional resources and mental workload during 
the encoding period. 

To summarize, EEG-workload but not engagement 
increased linearly across the multiple levels of 

FDS/BDS, grid-recall, and mental-addition tests. EEG-
engagement but not EEG-workload increased as a 
function of time-on-task during the 20-minute 3C-VT 
and for the learning and memory tests, EEG-
engagement and mental workload were higher 
during the encoding period than the recognition 
period and increased as a function of task difficulty.  
EEG measures were significantly correlated with both 
subjective and objective performance metrics. 

 
4. DISCUSSION 
 

These data confirm that the EEG can provide an 
unobtrusive method for monitoring dynamic 
fluctuations in cognitive states including task 
engagement and mental workload.  The temporal 
resolution of the EEG allows for precision 
calculations for each one-second or half-second of 
data; however, the detectable states are global in 
nature and the validation and interpretation of 
changes in cognitive state on a second-by-second 
basis requires further investigation. 

The results of the studies suggest that the EEG 
engagement index is related to processes involving 
information-gathering, visual scanning and sustained 
attention.  The EEG-workload index increases with  

Figure 5.  Mean EEG-workload and mean subjective rating 
scores for each difficulty level of the forward digit span and 
backward digit span for the cross validation group (n=17). 

Figure 6.  Mean EEG-workload and mean objective performance 
scores for each difficulty level of the forward digit span and 
backward digit span for the cross validation group (n=17). 

 

Figure 7.  Mean EEG-engagement for each difficulty level of the FDS and BDS for the cross validation group (n=17). 
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working memory load and during problem-solving, 
integration of information, analytical reasoning and 
may be more reflective of executive functions.  The 
two metrics have been shown to operate 
concordantly or independently, depending on the 
task environment, the level of task demands and the 
amount of effort required by the individual to 
complete the task.  In the present study, a 
combination of objective performance metrics such 
as reaction time and percentage of correct responses 
and subjective ratings to assess the perceived level of 
effort were used to validate the EEG metrics. 

Specifically, the EEG measures dissociated during 
a sustained vigilance task with a minimal load on 
working memory.  Reaction time increased and EEG-
engagement decreased over the 20-minute vigilance 
session while workload remained constant.   

During multi-level mental addition, grid location 

and forward and backward digit span tests, the EEG-
workload increased linearly as a function of 
increasing task difficulty.   During these same multi-
level tasks, EEG-engagement showed a pattern of 
change that was variable across tasks, levels and 
subjects.  The pattern included a relatively high 
engagement during the first level of each task and a 
decrease in engagement for the second level of task 
difficulty, suggesting an initial task adaptation or 
novelty response.  As task difficulty increased the 
engagement level trended upwards.  In this study the 
first level of each task was always the easiest and the 
difficulty level was incrementally increased with each 
level.  In future studies, however, a random mix of 
difficulty levels could be used to eliminate the novelty 
effects on the EEG.   Because subjects were provided 
as much time as needed to complete the trails task, 
EEG engagement and workload and performance 

Figure 8.  Mean EEG-engagement, EEG-workload and reaction 
time for each 5-minute quarter of the 3-CVT (n= 65 for EEG-
engagement and reaction time, n=27 for EEG-workload). 

Figure 9.  Mean EEG-engagement during the encoding and 
recognition/recall periods for the standard, verbal and 
interference learning and memory tests (n= 50). 

Figure 10.  Mean EEG-workload during the encoding and 
recognition/recall periods for the standard, verbal and 
interference learning and memory tests (n=15). 

Figure 11.  Mean percentage correct responses for the 
standard, verbal and interference learning and memory tests 
(n=50). 
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were constant across the three difficulty levels.   
In a series of image and verbal learning and 

memory tests designed to be increasingly difficult, 
both EEG-engagement and EEG-workload were 
higher during the encoding period than the 
recognition period and increased as a function of task 
difficulty.  The level of EEG engagement and workload 
during encoding was positively related to the level of 
performance on each of the learning and memory 
tests.  The conventional analysis of the EEG involves 
computation of the mean power spectral densities 
within the classically defined frequency bands 
including alpha, beta, theta, delta and gamma have 
been reported as the foundation for several EEG-
based models of mental workload (10-12, 30-33).   
The modeling technique described in this paper 
incorporates multiple EEG variables across scalp sites 
and 1-Hz frequency bins (from 1 Hz – 40 Hz) to be 
used as inputs to quadratic and linear discriminant 
function analyses that provide classifications for each 
second of EEG.  Models are constructed using 
stepwise multiple regression analyses to select those 
EEG variables that optimize the identification and 
classification of cognitive states within specified task 
environments.  Simple baseline tasks are used to fit 
classification algorithms to the individual that can 
then be applied to increasingly complex task 
environments, providing a highly sensitive and 
specific technique for identifying neural signatures of 
cognition in both real-time and offline analysis.  
These methods have proven valid in EEG 
quantification of drowsiness-alertness during driving 
simulation, simple and complex cognitive tasks and in 
military, industrial and educational simulation 

environments (15-17) quantifying mental workload 
in military simulation environments (4, 5), 
distinguishing spatial and verbal processing in simple 
and complex tasks (1), characterizing alertness and 
memory deficits in patients with obstructive sleep 
apnea (6, 36) and identifying individual differences in 
susceptibility to the effects of sleep deprivation (2).   

The approach described in this paper allows a 
complex mathematical model to be created using 
multiple EEG variables across frequencies and scalp 
locations.  Table 1 lists the number, sensor locations 
and frequency bins of the model-selected variables 
used to classify workload and engagement.  The 
engagement index relies heavily on EEG variables 
from the frequency bins in the beta and gamma 
bands, but also includes variables from delta, theta 
and alpha frequencies (Table 1).  The workload 
measure also includes multiple variables from all of 
the frequency ranges. 

In contrast, Prinzel and colleagues at NASA 
Langley (28) developed an EEG-engagement index 
based on beta activity (13 – 22 Hz) divided by alpha 
(8 – 12 Hz) plus theta (5 – 7 Hz) and applied it in a 
closed-loop system to modulate task allocation.  
Gevins (10-12) and Smith (30) reported frontal 
midline theta activity (5 – 7 Hz) increases during high 
task load conditions and  attenuated alpha activity (8 
– 12 Hz) proportional to increasing cognitive load.  
They suggested that these data could be combined in 
a multivariate approach individualized for each 
subject to indicate the extent to which a set of task 
demands activate the cortex during performance of 
the task.  Smith and Gevins (10) recently reported a 
refinement of their EEG workload model that 

Figure 12.  Second-by-second EEG-engagement and EEG-workload classifications for one subject performing the BDS.  Three 
correctly solved problems are illustrated, representing three levels of difficulty: a) three-digit, b) five-digit and c) seven-digit.   
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included quantification of alpha and theta band 
activity recorded from the frontal executive, central 
sensorimotor and posterior visual systems 
postulated to be linked to the regional cortical 
activation associated with decision-making, motor 
control and visuoperceptual demands respectively 
(10).  All regional indices increased linearly during 
performance of low, medium and high load versions 
of a flight simulator task and correlated with 
subjective reports of perceived mental workload. 

The value of using the established frequency band 
analyses is that they can be linked  historically to 
methods applied and reported in EEG research and 
interpretation over the past 50 years.  The risk in 
using simple metrics such as an increase in midline 
theta with a decrease in mean alpha or ratios of 
alpha, theta and beta is an oversimplification of 
cognitive state assessment.  For example, Smith and 
Gevins repeated the flight simulator experiment after 
sleep depriving participants and reported that the 
subjective mental effort was negatively correlated 
with frontal activation after sleep deprivation in 
contrast to the positive correlation between frontal 
activation and subjective mental effort in the fully-
rested condition (10).  They interpret these data as 
“problematic” for the development of automated 
systems that use brain activation in a closed-loop 
system designed to identify when operators are 
overloaded or underloaded and trigger greater 
information dissemination or task re-allocation.   

The model presented in this paper avoids the type 
of misclassifications reported in the Smith 
experiment (10) by combining a workload gauge, an 
engagement gauge and a drowsiness gauge 
(presented in previous work, see references 2 and 3) 
that are derived from independent discriminant 
function analyses that include variables that are 
sensitive to sleep deprivation.  The use of three 
gauges derived from a complex combination of EEG 
variables facilitates highly sensitive and specific 
classifications of cognitive state changes.    

Inspection of the data on a second-by-second 
timescale (see Figure 12) suggests that an even more 
significant and useful associations between EEG 
workload and engagement levels can be identified 
when aligned with specific time-locked task events.  
In the backward digit span example provided in 
Figure 12, the engagement levels are high during digit 
encoding and during the response period.  The 
workload levels tended to increase during the 
memory rehearsal and recall period when 
participants were required to mentally reverse the 
digit sequences.  These data provide preliminary 
evidence that the second-by-second classifications 
may offer valid reflections of cognitive state changes 

during task performance.  More in-depth analyses 
using time series analysis are planned to further 
assess the relationships between EEG and stimulus 
characteristics (e.g. easy/difficult) and response 
parameters (e.g. correct/incorrect and fast/slow 
responses).   

The workload and engagement gauges have been 
successfully integrated into real-time, closed-loop 
automated computing systems to implement dynamic 
regulation and optimization of performance during a 
driving simulation task and in the Aegis C2 and 
Tactical Tomahawk Weapons simulation 
environments (1, 3, 5).  These initial findings support 
the possibility of integration of real-time physio-
cognitive measures into the HCI loop to assist in 
managing information flow to increase the amount of 
information processed by human operators without 
increasing their level of stress.  The envisioned 
outcome is a closed-loop system that utilizes 
physiological indices for dynamic regulation and 
optimization of HCI in real-time with a goal of 
maintaining information load within the limits of the 
human information processor.    

Future applications of the EEG gauges presented 
in this paper include evaluating the effects of HCI, 
human factors, and ergonomic design on cognitive 
state to provide an objective method for guiding the 
development and testing of new interfaces.  These 
EEG metrics may also be useful in assessing the 
effectiveness of training and simulation programs.  
The workload and engagement gauges are currently 
being used for industrial and military ergonomic 
assessments and as part of an interactive learning 
environment for high school and college science 
students.  Additional applications include the 
assessment of synchronized engagement and 
workload acquired from multiple individuals to 
provide unique characterizations of group dynamics.  
Although the EEG provides a rich potential data 
source for cognitive state analysis, the addition of 
multiple physiological parameters such as heart rate 
variability, fNIR and eye-tracking may be required to 
extend the monitoring capabilities to include 
quantification of stress and emotional states.  
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