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Mental state changes induced by stimuli under experimental settings or by daily events in
real life affect task performance and are entwined with physical and mental health. In this
study, we developed a physiological state indicator with five parameters that reflect the
subject’s real-time physiological states based on online EEG signal processing. These
five parameters are attention, fatigue, stress, and the brain activity shifts of the left and
right hemispheres. We designed a target detection experiment modified by a cognitive
attention network test for validating the effectiveness of the proposed indicator, as such
conditions would better approximate a real chaotic environment. Results demonstrated
that attention levels while performing the target detection task were significantly higher
than during rest periods, but also exhibited a decay over time. In contrast, the fatigue
level increased gradually and plateaued by the third rest period. Similar to attention
levels, the stress level decreased as the experiment proceeded. These parameters
are therefore shown to be highly correlated to different stages of the experiment,
suggesting their usage as primary factors in passive brain-computer interfaces (BCI).
In addition, the left and right brain activity indexes reveal the EEG neural modulations
of the corresponding hemispheres, which set a feasible reference of activation for an
active BCI control system, such as one executing motor imagery tasks. The proposed
indicator is applicable to potential passive and active BCI applications for monitoring
the subject’s physiological state change in real-time, along with providing a means of
evaluating the associated signal quality to enhance the BCI performance.

Keywords: BCI, EEG, physiological state, attention, fatigue, stress

INTRODUCTION

Brain-computer interfaces (BCI) are methods that offer direct communication pathways between
the human brain and external devices which have attracted much attention in various fields. They
provide great potential for controlling machines, especially through a hands-free approach. To
translate electroencephalographic (EEG) signals into actual commands they depend on users to
generate EEG patterns recognizable to the system. These signals can be improved by appropriate
training (Neuper and Pfurtscheller, 2009), however, even if with such training, the inevitable mental
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state changes of the individual during BCI usage still impact
performance. Effects of attention and fatigue are regarded as the
main causes of variation in the performance of BCIs (Myrden
and Chau, 2015). Research has found that task engagement and
attentional processes may impact the performance of several BCI
techniques, such as P300 (Riccio et al., 2013) and motor imagery
(MI) (Zhang et al., 2016). Mental fatigue produced by prolonged
sequences of a cognitive task affects the accuracy of BCIs, as it
decreases the separability of EEG signals (Talukdar et al., 2019).
Furthermore, in a recent study by Zhang et al. (2020), it has been
found that resting EEG modulation induced by stress is one of
the key factors to signal-to-noise ratio and BCI performance.
To address such impact of mental state changes on active BCIs,
passive BCI has been proposed to assess the user’s cognitive
state during ongoing BCI tasks, allowing the improvement in the
interaction of human-machine system (Zander and Kothe, 2011).

On the other hand, people encounter various situations and
events in daily life that elicit different emotions and physiological
states than those in laboratory settings. Beyond their influences
on BCI systems, some physiological states, such as stress and
fatigue, are responsible for certain physical and mental health
problems. For example, stress accounts for physical problems
such as high blood sugar, high blood pressure, high cholesterol,
obesity (Clark et al., 2011), and mental problems, e.g., depressive
or anxiety disorders (Virtanen et al., 2007). Fatigue leads to
decreased attention, which is the main cause of transportation
accidents (Roets and Christiaens, 2019), and is reported to affect
several psychological and physiological aspects of health (Lock
et al., 2018). Besides stress and fatigue, other physiological states
affect human life in various ways. Since physiological states play
such important roles in both BCI and human life, how to measure
and visualize them both within and beyond experimental settings
is crucial and valuable.

A popular approach of deriving physiological states is from
physiological signals, including EEG, electrocardiography (ECG)
(Lampert, 2015; Hsu et al., 2017; Brás et al., 2018; Huang et al.,
2018), electromyography (EMG) (Wijsman et al., 2013; Luijcks
et al., 2014; Van Cutsem et al., 2017; Kehri et al., 2019), respiration
(Widjaja et al., 2013; Grassmann et al., 2016), and galvanic
skin response (GSR) (Villarejo et al., 2012; Fernandes et al.,
2014; Krupinski et al., 2015; Kurniawan et al., 2016; Liu et al.,
2016). Different physiological states regulate these autonomic
physiological signals which naturally respond to changes in the
central and peripheral nervous systems. Compared with other
physiological approaches, EEG more directly reflects responses to
the environment and external stimuli present in the processing of
these events by the central nervous system, thus yielding more
reliable outcomes. One of the most common methods for the
investigation of brain dynamics is to identify the EEG spectral
characteristics under varied conditions. Typically, EEG power
spectra are quantified and divided by frequency ranges, such
as delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–
31 Hz), and gamma (32–50 Hz) bands (Tatum, 2014), with these
oscillations within different frequency bands representative of
various brain activations and conditions. Several publications in
recent years have appeared documenting that EEG is a robust
approach to evaluate physiological states, including alertness,

drowsiness (Lin et al., 2010; Bajaj et al., 2020), fatigue (Monteiro
et al., 2019; Xu et al., 2019), and stress (Xia et al., 2018;
Asif et al., 2019). To assess the changes of physiological states
exploiting EEG signals, five parameters are employed to develop
the proposed pentagonal physiological state indicator: attention,
stress, fatigue, and left and right brain activity levels.

Attention has been one of the most discussed cognitive
functions in the field of neuroscience. It is an ability of an
individual to selectively concentrate on relevant information
while filtering irrelevant information. The attentional networks
composed of alerting, orienting, and executive attention
proposed by Posner and Petersen have been widely studied in
terms of functional and anatomical perspectives (Posner and
Petersen, 1990; Raz, 2004; Xuan et al., 2016). The attentional
network test (ANT) is a behavioral task designed to evaluate the
three stages of attention (Fan et al., 2002). The experiment that
was developed to validate the proposed indicator also utilized
ANT as a reference. Studies based on EEG indicate that attention
can be estimated by detecting changes in alpha power activity,
especially in the frontal lobe which is known to be responsible
in regulating concentration (Quilodran et al., 2008; Doesburg
et al., 2016). Research showed that the power spectra of theta and
alpha increase when the subject is going into drowsiness (Jung
et al., 1997; Lin et al., 2005); consistent experimental evidence has
also demonstrated that mental engagement is inversely correlated
to theta and alpha activities in the frontal region (Pope et al.,
1995; Szafir and Mutlu, 2012). Our previous study has also
demonstrated a real-time alertness detection system using this
approach (Lin et al., 2010). Furthermore, research has applied
similar approaches to determine attentional states during BCI
experiments, providing a means to improve BCI performance
(Lee et al., 2015).

Fatigue is a state that follows excessive physical or cognitive
activity, thus it is typically partitioned as physical fatigue or
mental fatigue (Jason et al., 2010). Physical fatigue is associated
with body or muscle exhaustion, which leads to unsatisfactory
physical performance. In contrast with physical fatigue, mental
fatigue generally denotes a feeling of sleepiness or drowsiness,
and it manifests as decreased attentional capacities and prolonged
reaction times (Boksem et al., 2005), resulting in reduced
efficiency. In a simulated driving experiment designed to study
fatigue by Ma et al. (2019) subjects were allowed limited sleep
and performed driving on tedious paths. It was found that
alpha and beta activities in parietal and occipital lobes were
strongly associated with the driver’s fatigue level (Ma et al., 2019).
Another experiment exploiting simulated driving by Huang et al.
(2016) demonstrated a closed-loop fatigue mitigation system that
detected fatigue from the alteration of theta and alpha power in
occipital components of recorded EEG. Similarly, experimental
results of an ICA-based BCI study by Chuang et al. (2013) showed
that increasing power in theta and alpha ranges were highly
correlated with poor task performance and fatigue.

With the rapid pace of modern lifestyles, people race against
time and experience different kinds of stressors. It is a well-
known fact that stress causes negative effects on our health,
emotions, and cognitive functions (McEwen and Sapolsky, 1995;
Pearlin et al., 2005; Lazarus, 2006). However, mild-to-moderate
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stress has been found to be salutary, with this relationship
between stress and performance described as the “inverted-U
theory” (Sapolsky, 2015). The frontal lobes of the brain have
been proposed as moderators of emotional regulation; extensive
research has shown that frontal alpha asymmetry, representing
the homologous differences between right and left frontal sites
(typically F4–F3), of the is associated with affective processing
(Harmon-Jones and Gable, 2018; Reznik and Allen, 2018).
The asymmetry score is derived by subtracting natural log-
transformed left hemisphere alpha power from the right, with
positive asymmetry scores indicating stronger relative activity
(Pfurtscheller et al., 1996). Specifically, it has been demonstrated
that positive asymmetry scores are linked to positive emotions,
whereas negative asymmetry scores are associated with stress
responses and negative emotions (Meyer et al., 2014; Quaedflieg
et al., 2015; Zhang et al., 2018a).

Motor imagery has been a widely discussed technique
in BCI applications, and acts as an endogenous BCI, as
it relies on spontaneous brain activities, as opposed to
brain dynamics elicited by an external stimulus. The signals
employed in MI-based BCI are based on principles of
event-related desynchronizations and synchronizations, which
correspond to changes of EEG power in the mu rhythm
during either mental imagination of movement or actual motor
execution (Pfurtscheller and Neuper, 1994; Pfurtscheller and
Neurophysiology, 1997). Previous studies revealed electrode
positions C3 and C4 are the most important ones for
differentiating different motor imagery tasks by acquiring mu
rhythm activities (Ramoser et al., 2000; Pfurtscheller et al., 2006).

To investigate the effectiveness of the proposed physiological
state indicator, a prolonged experiment based on target detection
was conducted. As acquiring EEG signals outside of experimental
settings is impractical, a portable multi-channel EEG device was
incorporated into the system development, as the long typical
setup time and procedure needed for preparation of a standard
off-the-shelf EEG system could affect the results in a study
focusing on a time dependent effect like fatigue. In this study,
a physiological state indicator with five parameters that reflect
the physiological state changes based on EEG dynamics was
developed, specifying the real-time fluctuations of the proposed
parameters during the usage of BCI. These five parameters
are attention, fatigue, stress, and the brain activities of the left
and right hemispheres. The incorporated physiological states
have been well-studied, with each having significant evidence
for adopting specific EEG channels and frequency bands to
derive them. The proposed experiment was designed to explore
the neurophysiological changes using the indicator during a
prolonged, attention-related task. With the proposed indicator,
BCI usage can be evaluated according to a user’s physiological
state changes, yielding improved BCI performances.

MATERIALS AND METHODS

The parameters in the indicator were derived by EEG signal
processing. We used portable wireless EEG equipment to
acquire the EEG signals during the experiment to validate the

effectiveness of the indicator. The signal processing flowchart is
illustrated in Figure 1.

Participants
Forty college students (30 males, 10 females) aged from 18 to
30 were recruited for participation in the study. No subjects
reported histories of psychiatric or neurological disorders. All
the participants were instructed to perform the task using their
right hand. The experiments were administered at National Chaio
Tung University (Hsinchu, Taiwan). The study was approved
by the institutional review boards (IRB) of National Chaio
Tung University.

Experimental Paradigm
In this study, we designed a target detection experiment that
simulates a battlefield scenario to elicit state changes assessed
by the proposed indicator (He et al., 2021). The experiment was
composed of a 30-s EEG baseline recording and five blocks of 12-
min sessions along with a 5-min rest session. First, the participant
was seated in front of a 23.6” monitor with a relaxed posture.
Then, the wireless EEG device was placed on the participant’s
head and adjusted to fit. The participant was asked to fixate at
the monitor showing a cross-mark for 30 s to establish a baseline
recording. Afterward, the participant underwent a 68-min task
to induce attention, fatigue, and stress level changes. In each trial,
the participant was shown a cue representing in an asterisk on the
left or right, indicating the probable location that a target would
appear. The cue was followed by the presentation of a target,
which was a figure of a soldier holding a rifle, accompanied with
five other figures as distractors. The participants were required to
press the button on the keyboard according to the direction of
the target as soon as possible (Figure 2). Congruent conditions
occurred if the direction of the target and the cue were the
same and incongruent if they were opposite. To mimic more
realistic circumstances, a condition with an absence of the target
represented a no-target condition, for which the participant was
required to press the “up” button. As the reaction time (RT) of
the no-target condition is assumed to be longer, the criterion of
maximal possible reaction time before a trial to be considered
as fail is set at 2 s. Within a 12-min session, each of the three
conditions were distributed between the 180 trials, resulting in 60
trials of each condition presented randomly during the session.
Each session is followed by a 5-min rest. The total duration of
the experiment was approximately 1 h, which was designed to
bring about a mental state of fatigue. During the rest period,
subjects were instructed to relax in order to ameliorate some
of the neurological effects resulting from prolonged tension or
discomfort produced during the active tasks; resting data from
the period after the first 2 min of rest were used so as to minimize
signal artifacts carrying over from the previous active stage. The
combination of session and rest repeated four times, comprising
the whole experiment. The attention parameter was assessed in
both active and resting periods, while the fatigue was assessed
and validated in the rest periods because other physiological
state changes could interference the measurement of the fatigue
parameter. To further investigate the effect of fatigue caused by
continuous cognitive performance, the subjects were inquired to
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FIGURE 1 | Signal processing for parameters. The EEG signals were acquired through a 32-channel wireless EEG device and preprocessed for artifact removal.
Then, the signals of the particular sites of interest were decomposed and normalized to yield five parameters.

FIGURE 2 | Experimental paradigm based on target detection. The experiment was composed of five sessions and five resting periods, with each session consisting
of 180 trials. Each subject was instructed to respond to the target, and the conditions of the stimulus referred to the relationship between the cue and the target (He
et al., 2021). To induce the effect of fatigue, the experiment lasted about 1 h.

rate their self-evaluated fatigue level they perceived during task
performances on a 10-point rating scale according to the method
described by Karrer et al. (2004).

Electroencephalographic Signal
Acquisition and Preprocessing
To be compatible with the real-time state indicator, a wireless
32-channel EEG system called VEGA developed by Artise
Biomedical, Taiwan was used for EEG acquisition. It consists of
a Bluetooth module, miniature amplifiers, and semi-dry sponge-
based electrodes with 32 designated channels: Fp1, Fp2, AF3,
AF4, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3,
Cz, C4, T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8,
O1, Oz, and O2. The sponge electrodes used in the experiment
function by absorbing saltwater prior to use; their design makes
them flexible, adequate for hairy scalps, and usable for long-
term EEG acquisition (Ko et al., 2019). The impedance of the
skin-electrode interface was monitored constantly during the

experiment. The references were located at the earlobes via two
ear clips, and the sampling rate was set at 500 Hz. To obtain
the features for physiological states, the acquired EEG signal
was preprocessed for artifact removal and feature extraction. The
signal underwent a 1–50 Hz bandpass filter for the preliminary
removal of artifacts. The artifact removal from the EEG signal was
carried out using the artifact subspace reconstruction (ASR) in
EEGLAB toolbox, which is a component-based method capable
of removing large-amplitude noise or artifacts in real-time, and
is therefore practical for embedding in the software of portable
devices (Chang et al., 2018). The ASR process comprises three
steps: (1) Extracting reference, (2) determining threshold, (3)
rejecting and reconstructing. To implement online ASR, the
reference data were extracted using the baseline before the
experiment onset. The reference data was applied to define
the rejection threshold. Therefore, the ASR could reject artifact
components and reconstruct cleaned data in near real-time
using the established threshold (Chang et al., 2019). The signal
was then processed via fast Fourier transform to obtain power
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spectral density (PSD) in decibel (dB). The PSD from the baseline
was subtracted from the task periods. Finally, the signals went
through band decomposition, yielding four commonly used
frequency bands, delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz),
and beta (13–31 Hz).

Development of Physiological State
Indicator
The features used to develop the five parameters were pre-
defined, yet their scales were not specified a priori. To obtain
easily understandable output parameters for each subject, the
EEG power retrieved from 40 subjects was normalized to a usable
scale. The general transformation formula was defined based on
normalized t-score, but with the scale ranging from 0 to 10.
The average power for each parameter was derived by averaging
specific power across all subjects, as the power has been processed
through baseline removal. Considering the existing and future
outlier data, the normalization factor is modified to σ/2 instead
of σ. Therefore, it enables 98.75% of the derived physiological
state levels, i.e., y (t), to be distributed within 0–10 (µ ± 2.5σ).
Previous study has posited the feasibility of using this approach
for normalization of EEG power values (Thatcher, 1998). The
formula is defined as:

y (t) = 5 ±
1
n

n∑
C 1

PC (t)−PC

fC

where P is the EEG band power of the region of interest (ROI), c
is the channels included in ROI, n is the number of channels, and
f is the normalization factor.

For a better, intuitive visualization, the magnitudes of the
normalized parameters were displayed in a pentagonal indicator
(Figure 3). Attention is known to be inversely proportional to
the theta- and alpha-band amplitudes in the frontal region (Lin
et al., 2010; Szafir and Mutlu, 2012), which were the F3, Fz, and F4
sites according to the channel locations on the EEG equipment.
Therefore, the level of the attention parameter was defined as:

Attention (t) = 5−
1
3

(
PF3 (t)−PF3

fF3
+

PFz (t)−PFz

fFz
+

PF4 (t)−PF4

fF4

)

where P is the EEG power includes theta and alpha
frequency bands.

As previous studies have reported, fatigue level is positively
proportional to wide-band EEG power in the occipital
region, including theta-, alpha-, and beta-band amplitudes,
corresponding to the O1, Oz, and O2 electrodes (Chuang et al.,
2013; Huang et al., 2016; Ma et al., 2019). The level of the fatigue
parameter is defined as:

Fatigue (t) = 5+
1
3

(
PO1 (t)−PO1

fO1
+

POz (t)−POz

fOz
+

PO2 (t)−PO2

fO2

)

where P is the EEG power includes theta, alpha, and beta
frequency bands.

Alpha asymmetry in the frontal region, measured F4/F3 signal
ratios, was utilized as the stress parameter, defined as:

Stress (t) = 5−
PF4 (t)−PF3 (t)

fC

where P is the natural log-transformed alpha power and fC is
std(PF4−PF3)

2 . Positive asymmetry scores represent stronger relative
left than right activity as higher alpha band power reflects
lower brain activity.

Similar to the parameters that positively correlate to the
amplitudes of EEG power, the parameters of the left and right
brain activity also followed a normalized formula. Hence, the
parameter for left brain activity is defined as:

Left (t) = 5+
PC4 (t)−PCz (t)

fC

and the parameter of right brain activity is defined as:

Right (t) = 5+
PC3 (t)−PCz (t)

fC

where P is the EEG power within mu rhythm (8–13 Hz), fC
is std(PC4−PCz)

2 for left brain activation and std(PC3−PCz)
2 for right

brain activation, respectively.
Figure 3 depicts an informational flow diagram underlying

the state indicator. While utilizing a BCI accompanied by
the physiological state indicator, the acquired EEG signal was
transmitted to the computer through Bluetooth. The user data
would be recorded for 30 s to establish a baseline for removal,
also as the reference data for ASR, as previously described. The
recorded signal was then sent to a portable device by a computer
program based on C# via local area networks with a refresh rate
of 1 s. Any EEG state changes of the user during BCI usage
would be converted into corresponding values of the proposed
parameters based upon the mean and standard deviation of
EEG power acquired by the 40-subject dataset. The indicator on
the portable device displays the five parameters acquired from
the connected computer on an easily accessible pentagonal plot
in near real time.

RESULTS

Behavioral Statistics
In the experiment, the stimuli are categorized as congruent,
with the direction of the cue matching the target, incongruent,
with the direction of the cue different from the target, or no-
target, where the target is absent. To investigate the effects
caused by different conditions, the RT and accuracy of the users’
responses were recorded. The condition of the congruent stimuli
induced the shortest median RT of 634.7 ms (IQR 567.5–731.0).
The incongruent stimuli yielded a slightly longer median RT
of 665.7 ms (IQR 613.7–765.9). Other than the left and right
stimulus correspondence choices, the subjects were required
to press the “up” button after they recognized the absence of
the target, which led to the longest median RT of 868.0 ms
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FIGURE 3 | System information flow. The EEG acquisition is conducted with the software in the computer through Bluetooth. The acquired signal could be applied
to a BCI system; at the same time, it is transmitted to the monitoring system running on portable devices. In the system, the signal is computed to easily assess the
parameters which are displayed in a pentagon plot.

FIGURE 4 | Reaction time and accuracy of congruent, incongruent, and no-target stimulus. (A) The mean RT of the three conditions. The RT of no-target stimulus
was significantly longer than other conditions. (B) The accuracy of the three conditions. The incongruent stimulus induced the highest accuracy of 99.17% (IQR
98.75–100.00). *indicates that the difference between the two groups was statistically significant. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the “+” marker symbol.

(IQR 789.5–983.0). The median accuracies of the congruent,
incongruent, and no-target conditions were 98.75% (IQR 97.91–
99.17), 99.17% (IQR 98.75–100.00), and 98.54% (IQR 97.50–
99.58), respectively. The variables of RT and accuracy were
compared using Kruskal-Wallis test, as they were not normally
distributed. The p-values were adjusted for multiple comparisons
using the Dunn and Sidák’s approach. A false discovery rate of
p < 0.05 was considered statistically significant represented by an
asterisk (*) (Figure 4).

Validation of Parameters
The five parameters within the proposed physiological state
indicator were developed using particular combinations of brain
regions and EEG frequency bands. Each parameter, respectively,
represents a distinct mental state, therefore, we utilized different

periods in the experiment for validation. To assess the attention
parameter, the whole experiment was included to obtain the
dynamics of attention throughout the four experimental sessions
and rests. The results demonstrated that attention levels during
the active sessions were significantly higher than their subsequent
rest periods, but also exhibited a decay over time (Figure 5). The
attention level during the rest periods also declined over time
and eventually stabilized by the final period. The rest periods
in the experiment were used to study the fatigue levels affected
by the long sessions during which the subjects were highly
focused. The experiment was intentionally lengthy, reaching
nearly 1 h, with the intention of inducing fatigue. Consequently,
the fatigue levels increased gradually and plateaued by the
third rest period (Figure 6). In addition to the assessment
by EEG signals, self-evaluated fatigue levels were recorded for
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FIGURE 5 | Attention level fluctuations during the whole experiment. This parameter was developed using theta and alpha-band power at F3, Fz, and F4. (A) The
average attention level across the four session and rest periods. (B) The attention level during the sessions decreased over time and was significantly higher than
during the following rest periods in pairs 2 and 3. *indicates that the difference between the two groups was statistically significant. The whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted individually using the “+” marker symbol.

FIGURE 6 | Fatigue level fluctuations during the rest periods. This parameter was developed using theta, alpha and beta-band power at O1, Oz, and O2. (A) The
average fatigue level across the four rest periods. (B) The fatigue level increased from rest 1 to rest 3 and mitigated in rest 4. (C) The self-evaluated fatigue level over
four rest periods. *indicates that the difference between the two groups was statistically significant. The whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the “+” marker symbol.

comparison (Figure 6C). The stress parameter was intended to
respond to the stress that the users experience across different
sessions. It illustrated that the stress levels were at their highest in
the beginning of the experiment, and then significantly decreased
over the four session periods (Figure 7). Since the participants
were instructed to perform the experiment with their right
hand, hypothetically the derived right brain activity levels should
be higher than the left brain activity level during all session
periods and approximate to the left brain activity level in all rest
periods. However, the results revealed that the left and right brain
activities were close to each other, and did not appear to exhibit
significant trends (Figure 8). The levels of the parameters of each
subject were averaged per period for statistical analysis, yielding
one average value of the physiological state level per subject in one
period (session or rest). The comparable distributions passed the
Kolmogorov-Smirnov test for normality. The average levels of the
attention parameter between each pair of session and rest were
compared using the paired t-test. The average levels of the fatigue

and stress parameters were compared using the repeated measure
ANOVA with post-hoc test using Dunn and Sidák’s approach. The
alpha level of 0.05 was used for statistical hypothesis testing.

DISCUSSION

In this study, we developed a physiological state indicator
integrated with wireless EEG equipment, enabling the assessment
of physiological states for potential passive and active BCI
applications. Prior active BCI studies have documented the
effects of physiological state changes on BCI performance
(Riccio et al., 2013; Myrden and Chau, 2015; Talukdar et al.,
2019; Zhang et al., 2020). During long-term BCI performance
users’ physiological states change spontaneously, which lead to
unsatisfactory outcomes. However, passive BCIs may facilitate
the use of traditional, active BCIs by providing an estimation
of the underlying user state variations (Millán et al., 2010).
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FIGURE 7 | Stress level fluctuations during the active sessions. This parameter was developed using log-transformed alpha-band power at F3 and F4. (A) The
average stress level across the four session periods. (B) The stress level significantly decreased over time. *indicates that the difference between the two groups was
statistically significant. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the “+” marker
symbol.

Parameters that were reported to affect BCI performance,
including attention, fatigue, and stress were adopted in the
proposed system, and the left and right brain activity parameters
were designed specifically for MI-based BCI, yielding a collection
of five parameters for BCI assessment. The experiment based
on ANT not only induced attentional alterations, the prolonged
duration also caused fatigue in the subjects and the moderate
difficulty allowed subjects to adapt, producing transitions
in stress levels.

To induce attention differences between active sessions and
rest periods, but not produce excessive fatigue over the 1-
h duration, we designed an experiment that was based on

FIGURE 8 | Left and right brain activity level fluctuations during the whole
experiment. The parameters were developed using alpha-band power of
C4–Cz and C3–Cz. It shows that the left and right brain activities are
approximate to each other, and neither ascended nor descended significantly.

target detection and ANT, somewhat modified to be closer
to real-world scenarios. With this experiment, the relationship
among these three conditions and the physiological state changes
of the users can be evaluated. Generally, incongruent conditions
introduce “conflict” that requires longer information processing
times, resulting in longer RTs. In our experiment, the target
in the no-target condition is absent, hypothetically causing
even longer RTs than the incongruent conditions. The no-
target condition demonstrated a lower accuracy of 98.54% and
a significantly longer median RT of 868.0 ms, compared to
the congruent and incongruent conditions. The conflict in the
incongruent condition did bring about slightly longer median
RT, however, the had the highest accuracy among the conditions.
This may have been caused by the relatively simple experimental
design compared to similar cognitive experiments, such as the
classical ANT protocol. As the result, the median accuracies
for all conditions exceeded 98%. Nevertheless, the experimental
procedure provided the necessary factors to elicit physiological
state changes, especially for the adopted parameters. Although
the participants were instructed to respond as soon as possible,
the maximal possible reaction time before a trial was considered
as failed was set at 2 s because the experiment included the
no-target condition. This was assumed to require a longer
reaction time, resulting a ceiling effect for performance. However,
several participants performed relatively poorly, and there
were significant differences between congruent/incongruent and
incongruent/no-target conditions, indicating that the three
conditions could elicit the variations in performance within
participants, despite the ceiling effect.

A large body of prior literature has indicated that
neurophysiological signals contain information related to
physiological state changes, which were acquired via EEG in
our experiment (Lin et al., 2010; Xia et al., 2018; Asif et al.,
2019; Monteiro et al., 2019; Xu et al., 2019; Bajaj et al., 2020).
Some of the research in recent years has applied machine
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learning or deep learning methods to identify different stages
of physiological states (Jebelli et al., 2019; Ma et al., 2019;
Khessiba et al., 2021). However, the high computational power
that deep learning demands does not necessarily provide better
classification performance due to inter-subject variabilities.
For example, in studies that investigated human fatigue during
driving simulation experiments, one experiment deployed an
EEG classifier based on convolutional neural networks (CNN),
which demonstrated an average accuracy of 92.68% in the
intra-subject test (Zeng et al., 2018). By contrast, it demonstrated
a reduced performance of 84.38% in an inter-subject binary
classification, falling beneath the performance reported by
Ko et al. (2015), which employed a linear regression model
on a 1–30 Hz EEG power spectrum array. A review study by
Monteiro et al. (2019) also demonstrated that linear models like
fisher linear discriminant analysis (FLDA) could outperform
deep belief network (DBN) while using PSD to assess mental
fatigue in cross-subject classification. In consideration of the
computational capacity necessary to process five parameters
in real-time on portable devices, we implemented models that
determine physiological state levels using linear transforms of
EEG power amplitudes. Additionally, adaptive BCIs have been
proposed to deal with the ubiquitous non-stationarities in EEG
signals (Shenoy et al., 2006). Linear transformation models like
our indicator benefit the such adaptive models by providing
consecutive levels that correspond to user physiological state
changes rather than binary classification (Krol et al., 2016;
Zhang et al., 2018b).

To study and validate the indicator that was developed based
on cognitive state changes, a prolonged experiment incorporating
EEG signal recording was administered. In general, long-term
task performance results in increases in fatigue and reductions in
goal-directed attention (Boksem et al., 2005). In the validation of
the attention parameter, the attention levels in the active sessions
surpassed those in the subsequent rest periods, and fluctuations
indicated that the users’ mental engagements dropped in the
resting periods, then ascended right after the task onset. In
addition, attention level exhibited a decay over time in both
active sessions and rest periods, suggesting that attention reduced
throughout the experiment. In other words, the subject’s theta
and alpha band amplitudes in the frontal region increased over
time under both conditions. However, it is generally accepted
that attention is categorized into a variety of types based upon
functional aspects. Sustained attention represents the attentional
functionalities that determine the cognitive capacity and efficacy
of selective and divided attention (Sarter et al., 2001), which is
represented by the attention parameter, and reflects the vigilance,
of an individual during long-term BCI usages.

The cognitive demands during the experiment cause mental
fatigue, which is assumed to increase over time. Trejo et al.
(2015) demonstrated that the EEG signs of developing mental
fatigue are present 15–30 min after task onset. In our paradigm,
physiological state changes other than fatigue could confound
the measurement of the fatigue parameter. Therefore, the fatigue
was assessed and validated in the rest periods, as opposed to
the attention parameter which was assessed in both active and
resting periods. The results showed that the estimated fatigue
levels during the rest periods, which followed 12-min cognitive

performance sessions, progressively ascended and peaked in the
third period, indicating the subjects were experiencing maximal
fatigue by that time. Correspondingly, the self-evaluated fatigue
level in period 3 reached an average of 7.25 points out of 10, which
was also the highest among the four rest periods. The fatigue
level demonstrated a similar trend to the cluster of “strugglers”
proposed by Karrer et al. (2004), which presented a high level of
fatigue during a simulated driving test and subsequent reduction
of fatigue toward the end of the driving test. We inferred that
the perception of the impending end of the experiment resulted
in a reduction of fatigue level, possibly indicating a mental
relaxation in the subject.

Stress is a parameter that was not specifically elicited in
the experimental design, instead, the spontaneous responses
of the subjects during four sessions were recorded. Compared
with the EEG characteristics that correlate to attention and
fatigue, frontal alpha asymmetry is a relatively well-established
electrophysiological feature for stress assessment. In a study
proposed by Arpaia et al. (2020), frontal alpha asymmetry was
applied to machine learning classifiers and achieved more than
a 90% accuracy in classifying 2-s EEG epochs using a wearable
EEG instrument. Similarly, the F4/F3 asymmetry was adopted in
this study to assess the stress that the subject experienced in the
successive performance of the cognitive task. As the experiment
proceeded, subjects’ stress levels exhibited a descending trend,
indicating that the subjects felt less anxious toward the last
session, according to gradually increased F4-F3 asymmetry
scores. Generally speaking, situations that are unpredictable,
ambiguous, or unfamiliar are more likely to elicit stress (Michie
and medicine, 2002). In our experiment, which did not include
induced stressors, the unfamiliarity of the first session, where the
subjects experienced the highest level of stress, was posited as the
main factor of stress; this elevated stress level was mitigated as the
subjects habituated the experiment.

One limitation of the proposed indicator is that the advanced
algorithms of MI-BCIs were not included in the parameters of left
and right activity. The MI-BCI algorithms have been extensively
studied to distinguish the EEG patterns representative of the
mental imagination of different movements. Simply measuring
the mu rhythm power of the left and right motor cortices might
not be sufficient to differentiate motor executions based on the
results of the left and right brain activity parameters. Estimating
the subject’s event-related desynchronization/synchronization is
fundamental to MI, however, additional algorithms utilizing the
existing parameters are required for accurate MI-BCI control.

In this study, the features for the five parameters were
adopted based on online signal processing using the findings of
previous studies. The experiment intended to elicit the variations
in the parameters of the subjects, specify the EEG power
ranges of the parameters, and thus develop a real-time multi-
parameter physiological state indicator with proper scaling. In
the experimental design, the general attention and fatigue were
assessed, while the stress, left activity, and right activity were
studied through the spontaneous responses of the participants.
However, to investigate each of the parameters throughout,
sophisticated experimental design for each of the parameters
would benefit the investigation of the physiological state changes.
Furthermore, the parameters have intricate interactions and
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are not independent mechanisms. For instance, the impact of
fatigue on attention (Boksem et al., 2005; Faber et al., 2012), the
interactions between attention and stress (Chajut and Algom,
2003; Zhang et al., 2020), and even the effects of fatigue and
stress on MI (Talukdar et al., 2019; Schlatter et al., 2020). Such
usage of a general indicator doesn’t warrant a detailed intra-
parametric analysis, though that could be an interesting direction
for generating a future indicator.

Mental workload is a parameter we would like to investigate
and incorporate into the system in the future. Despite different
causes, the physiological correlates of mental workload and
stress manifest in rather similar ways (Parent et al., 2019).
Likewise, research by Käthner et al. (2014) reported that a
high mental workload, as well as fatigue, affects event-related
potential (ERP) -based BCI performance. The results of our
previous work reported in Zhang et al. (2020) also indicated
that stress-dependent effects are similar to the outcome of
fatigue, leading to a potential conclusion that stress and
fatigue both impact attention capacity and interact to affect
BCI performance.

All in all, future experiments should be designed and managed
carefully as the causes and consequences of the physiological
states including mental workload, attention, stress, and fatigue
can be easily confounded. It is worth mentioning that currently
the values of the parameters in the indicator are derived from
the 40-subject EEG data. The indicator software on portable
devices can instantly reflect the physiological states of the
user based on the existing dataset. In addition, with accurate
labeling of corresponding physiological states, parameters in
future indicator can benefit from the acquired EEG signals
during potential experiments, as the collected data provide more

neurophysiological information for parameter calibration. As
such, the dataset would be expanded and bring about more
generalized results.

With the increasing quality of commercial EEG devices and
advancements in artifact removal techniques, using BCIs in
parallel with physiological state assessment tools in daily living
has become more realistic. The validation results suggest that the
neurophysiological manifestations of state changes are consistent
across a variety of cognitive processes, setting the stage for
practical applications of mental state indicators in passive BCIs.
The proposed multi-parameter indicator has since been applied
to a variety of fields in real-world environments to strengthen
the practicability of the system. In 2018, a study adopted the
physiological state indicator to aid professional and amateur Go
players in competing with smart machines (Lee et al., 2020;
Figure 9A). The wearable BCI system benefits machine-human
co-learning as it can be integrated with training methods or
neurofeedback to monitor and regulate Go players’ physiological
states, helping them to maintain their attention and overcome
the competitive pressure experienced in the game. Later, the
system was extended to the educational domain interfacing
with an intelligent agent for robotic edutainment in 2019 (Lee
et al., 2019; Figure 9B). The experimental results showed that
through playing games, the system improved the interest and
performance of students in mathematical and language learning.
Currently, the proposed indicator is also being applied to a game-
based assessment for cognitive function in Kaohsiung Medical
Hospital (Figure 9C) and a training paradigm for military
soldiers using a first person shooting scenario in National Chung
Shan Institute of Science and Technology (Figure 9D). To sum
up, by estimating physiological state changes precisely using

FIGURE 9 | Real-world applications of the proposed physiological states indicator. (A) A Go player using the system while playing Go with smart machines for
machine-human co-learning. (B) Intelligent agent for robotic edutainment in mathematical and language learning. (C) Game-based assessment of cognitive
functions. (D) Training of soldiers using first person shooting scenario.
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artifact-free EEG signals, the indicator can advance applications
in interdisciplinary fields.

CONCLUSION

To our knowledge, this is the first study presenting a system
that indicates easily accessible metrics regarding multiple
physiological states via wireless EEG in real-time. While BCI
has been demonstrating great potential for controlling external
devices with our minds, the physiological state changes induced
by excessive stimulus under experimental settings or real
conditions not only impact task performance and BCI accuracy,
but are also interconnected with physical and mental health.
Therefore, the concept of a passive BCI indicator is proposed
to address such conditions by identifying the users’ spontaneous
brain activities in real time. In this study, the parameters
integrated into the state indicator include attention, fatigue,
stress, and left and right brain activities, which were derived
according to the cognitive state changes gathered from EEG
signal processing. Furthermore, a prolonged experiment based on
target detection was developed to validate the proposed indicator.
The experimental results demonstrated a feasible outcome that
corresponded to different stages during the experiment. The
proposed physiological state indicator is applicable to online
BCI applications, simultaneously allowing the state of the user
to be assessed, along with providing a means of continuously
evaluating the associated control signal quality.
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